Yayın:
Sequences associated to elliptic curves

dc.contributor.authorGezer, B.
dc.contributor.departmentFen Edebiyat Fakültesi
dc.contributor.departmentMatematik Ana Bilim Dalı
dc.contributor.scopusid24485316600
dc.date.accessioned2025-08-06T22:43:00Z
dc.date.issued2022-01-01
dc.description.abstractLet E be an elliptic curve defined over a field K (with char(K) ≠ 2) given by a Weierstrass equation and let P = (x, y) ∈ E(K) be a point. Then for each n ≥ 1 and some γ ∈ K∗we can write the x- and y-coordinates of the point [n]P as {equation presented} where φn, φn, ωn ∈ K[x, y], gcd(φn, ψn) = 1 and Fn(P) = γ1-n2ψn(P),Gn(P) = γ-2n2φn(P),Hn(P) = γ-3n2ωn(P) are suitably normalized division polynomials of E. In this work we show the coefficients of the elliptic curve E can be defined in terms of the sequences of values (Gn(P))n≥0and (Hn(P))n≥0of the suitably normalized division polynomials of E evaluated at a point P ∈ E(K). Then we give the general terms of the sequences (Gn(P))n≥0and (Hn(P))n≥0associated to Tate normal form of an elliptic curve. As an application of this we determine square and cube terms in these sequences.
dc.identifier.endpage24
dc.identifier.issn1582-3067
dc.identifier.issue4
dc.identifier.scopus2-s2.0-85169508902
dc.identifier.startpage 74
dc.identifier.urihttps://hdl.handle.net/11452/53390
dc.identifier.volume24-74
dc.indexed.scopusScopus
dc.language.isoen
dc.publisherPublishing House of the Romanian Academy
dc.relation.journalMathematical Reports
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectSquares
dc.subjectRational points on elliptic curves
dc.subjectElliptic divisibility sequences
dc.subjectElliptic curves
dc.subjectDivision polynomials
dc.subjectCubes
dc.subject.scopusElliptic Curves and Divisibility Sequences in Number Theory
dc.titleSequences associated to elliptic curves
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentFen Edebiyat Fakültesi/ Matematik Ana Bilim Dalı
local.indexed.atScopus

Dosyalar