Publication:
Deterrmining the minimal polynomial of cos(2π/n) over Q with Maple

dc.contributor.authorSimos, T. E.
dc.contributor.authorPsihoyios, G.
dc.contributor.authorTsitouras, C.
dc.contributor.authorAnastassi, Z.
dc.contributor.buuauthorÖzgür, Birsen
dc.contributor.buuauthorYurttaş, Aysun
dc.contributor.buuauthorCangül, İsmail Naci
dc.contributor.departmentFen Edebiyat Fakültesi
dc.contributor.departmentMatematik Bölümü
dc.contributor.orcid0000-0002-0700-5774
dc.contributor.orcid0000-0002-0700-5774
dc.contributor.researcheridAAG-8470-2021
dc.contributor.researcheridJ-3505-2017
dc.contributor.researcheridABA-6206-2020
dc.contributor.researcheridABI-4127-2020
dc.contributor.scopusid54403501400
dc.contributor.scopusid37090056000
dc.contributor.scopusid57189022403
dc.date.accessioned2022-04-05T06:12:15Z
dc.date.available2022-04-05T06:12:15Z
dc.date.issued2012
dc.descriptionBu çalışma, 19-25 Eylül 2012 tarihleri arasında Kos[Yunanistan]’da düzenlenen International Conference of Numerical Analysis and Applied Mathematics (ICNAAM)’da bildiri olarak sunulmuştur.
dc.description.abstractThe number lambda(q) = 2cos pi/q, q is an element of N, q >= 3, appears in the study of Hecke groups which are Fuchsian groups, and in the study of regular polyhedra. There are many results about the minimal polynomial of this algebraic number and in some of these methods, the minimal polynomials of several algebraic numbers are used. Here we obtain the minimal polynomial of one of those numbers, cos(2 pi/n), over the field of rationals by means of the better known Chebycheff polynomials for odd q and give some of their properties. We calculated this minimal polynomial for n is an element of N by using the Maple language and classifying the numbers n is an element of N into different classes.
dc.description.sponsorshipEuropean Soc Computat Methods Sci, Engn & Technol (ESCMSET)
dc.description.sponsorshipR M Santilli Fdn
dc.identifier.citationÖzgür, B. vd. (2012). "Deterrmining the minimal polynomial of cos(2π/n) over Q with Maple". ed. T. E. Simos vd. AIP Conference Proceedings, Numerical Analysis and Applied Mathematics (ICNAAM 2012), 1479(1), 368-370.
dc.identifier.endpage370
dc.identifier.isbn978-0-7354-1091-6
dc.identifier.issn0094-243X
dc.identifier.issue1
dc.identifier.scopus2-s2.0-84883097669
dc.identifier.startpage368
dc.identifier.urihttps://doi.org/10.1063/1.4756140
dc.identifier.urihttps://aip.scitation.org/doi/abs/10.1063/1.4756140
dc.identifier.urihttp://hdl.handle.net/11452/25547
dc.identifier.volume1479
dc.identifier.wos000310698100088
dc.indexed.wosCPCIS
dc.language.isoen
dc.publisherAmer Inst Physics
dc.relation.bap2012/15
dc.relation.bap2012/19
dc.relation.journalAIP Conference Proceedings, Numerical Analysis and Applied Mathematics (ICNAAM 2012)
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectMathematics
dc.subjectPhysics
dc.subject.scopusHecke Groups; Modular Forms; Congruence Subgroups
dc.subject.wosMathematics, applied
dc.subject.wosPhysics, applied
dc.titleDeterrmining the minimal polynomial of cos(2π/n) over Q with Maple
dc.typeProceedings Paper
dspace.entity.typePublication
local.contributor.departmentFen Edebiyat Fakültesi/Matematik Bölümü
local.indexed.atScopus
local.indexed.atWOS

Files

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: