Yayın:
A machine learning approach for buckling analysis of a bi-directional fg microbeam

dc.contributor.buuauthorYAYLI, MUSTAFA ÖZGÜR
dc.contributor.buuauthorUZUN, BÜŞRA
dc.contributor.buuauthorDELİKTAŞ, BABÜR
dc.contributor.buuauthorTariq, Aiman
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentİnşaat Mühendisliği Ana Bilim Dalı.
dc.contributor.orcid0000-0002-7636-7170
dc.contributor.orcid0000-0003-2231-170X
dc.contributor.researcheridAAJ-6390-2021
dc.contributor.researcheridLCS-1995-2024
dc.contributor.researcheridABE-6914-2020
dc.date.accessioned2025-01-23T13:01:50Z
dc.date.available2025-01-23T13:01:50Z
dc.date.issued2024-07-27
dc.description.abstractThis study investigates the buckling analysis of a bi-directional functionally graded nanobeam (BD-FGNB) on a Winkler foundation through machine learning (ML) methodologies and semi-analytical solution based on Fourier series and Stokes' transform. Buckling is investigated via nonlocal strain gradient theory that incorporates the effects of both nonlocal theory and strain gradient theory into the problem. The nonlocal strain gradient theory is employed to model the nanobeam and generate the dataset for training ten distinct ML models. The predictive capabilities of models are evaluated and the ML model with best predictive accuracy is identified by comparing their outcomes against analytical results. Results indicate the exceptional performance of the XGBoost (XGB) model in precisely predicting buckling loads while maintaining high computational efficiency. The R2, MAE, and RMSE evaluation metrics demonstrate remarkable values of 0.999, 2.05, and 3.58, respectively, affirming the model's accuracy. Utilizing the SHAP approach, it is found that the foundation parameter has the highest impact on the initial buckling mode, while its impact reduces in subsequent modes. The results from SHAP are validated using the analytical solution where both approaches show that higher values of foundation and material length scale parameters increases the buckling load, however higher values of nonlocal parameter and material grading coefficient in y and z directions decreases the buckling load.
dc.identifier.doi10.1007/s00542-024-05724-w
dc.identifier.issn0946-7076
dc.identifier.scopus2-s2.0-85200042771
dc.identifier.urihttps://doi.org/10.1007/s00542-024-05724-w
dc.identifier.urihttps://hdl.handle.net/11452/49744
dc.identifier.wos001277868200001
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherSpringer Heidelberg
dc.relation.bapFGA-2022-1211
dc.relation.journalMicrosystem Technologies-micro-and Nanosystems-information Storage And Processing Systems
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectVibration analysis
dc.subjectNanobeams
dc.subjectBehaviors
dc.subjectScience & technology
dc.subjectTechnology
dc.subjectPhysical sciences
dc.subjectEngineering, electrical & electronic
dc.subjectNanoscience & nanotechnology
dc.subjectMaterials science, multidisciplinary
dc.subjectPhysics, applied
dc.subjectEngineering
dc.subjectScience & technology - other topics
dc.subjectMaterials science
dc.subjectPhysics
dc.titleA machine learning approach for buckling analysis of a bi-directional fg microbeam
dc.typeArticle
dc.type.subtypeEarly Access
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/İnşaat Mühendisliği Ana Bilim Dalı.
local.indexed.atWOS
local.indexed.atScopus
relation.isAuthorOfPublicationf9782842-abc1-42a9-a3c2-76a6464363be
relation.isAuthorOfPublication9d931598-bdd6-4fdd-b625-909ec0444b5c
relation.isAuthorOfPublication61c4d3a5-cfbe-45da-969f-1a074b57717e
relation.isAuthorOfPublication.latestForDiscoveryf9782842-abc1-42a9-a3c2-76a6464363be

Dosyalar