Publication:
Prediction of parameters which affect beach nourishment performance using MARS, TLBO, and conventional regression techniques

dc.contributor.authorKarasu, Servet
dc.contributor.authorNacar, Sinan
dc.contributor.authorUzlu, Ergun
dc.contributor.authorYüksek, Ömer
dc.contributor.buuauthorKankal, Murat
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentİnşaat Mühendisliği
dc.contributor.orcid0000-0003-0897-4742
dc.contributor.researcheridAAZ-6851-2020
dc.contributor.scopusid24471611900
dc.date.accessioned2023-02-22T12:49:09Z
dc.date.available2023-02-22T12:49:09Z
dc.date.issued2019-08-09
dc.description.abstractArtificial beach nourishment is one of the most important environmentally friendly coastal protection methods since it protects the aesthetic and recreational values of the beach and increases its protective properties. Therefore, the main aim of the current study is to assess the accuracy of multivariate adaptive regression splines (MARS) in predicting the parameters, namely sediment transport coefficients (K) and the diffusion rate (omega), which affect beach nourishment performance. The performance of the MARS was determined by comparison of the models using exponential, linear, and power regression equations trained by conventional regression analyses (CRA) and the teaching-learning based optimization (TLBO) algorithm. In all models, two different input data obtained from the experimental study were used, one dimensional and one non-dimensional. The results presented that the MARS models gave lower error values than the CRA and TLBO models according to the root mean square error, mean absolute error, and scattering index criteria. When the models were evaluated, it was revealed that dimensional and non-dimensional models gave approximate results. We proved that the dimensional and non-dimensional MARS models can be used to estimate the (K) and (omega) values.
dc.identifier.citationKarasu, S. vd. (2020). "Prediction of parameters which affect beach nourishment performance using MARS, TLBO, and conventional regression techniques". Thalassas, 36(1), 245-260.
dc.identifier.endpage260
dc.identifier.issn0212-5919
dc.identifier.issn2366-1674
dc.identifier.issue1
dc.identifier.scopus2-s2.0-85073977415
dc.identifier.startpage245
dc.identifier.urihttps://doi.org/10.1007/s41208-019-00173-z
dc.identifier.urihttps://link.springer.com/article/10.1007/s41208-019-00173-z
dc.identifier.urihttp://hdl.handle.net/11452/31133
dc.identifier.volume36
dc.identifier.wos000520610700030
dc.indexed.wosSCIE
dc.language.isoen
dc.publisherSpringer
dc.relation.collaborationYurt içi
dc.relation.journalThalassas
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectBeach nourishment
dc.subjectMultivariate adaptive regression splines
dc.subjectSediment transport
dc.subjectShore protection
dc.subjectTeaching-learning based optimization
dc.subjectLearning-based optimization
dc.subjectSplines
dc.subjectModels
dc.subjectEvolution
dc.subjectClimate
dc.subjectRates
dc.subjectArea
dc.subjectSet
dc.subjectMarine & freshwater biology
dc.subjectOceanography
dc.subject.scopusBeach Profile; Sandbar; Coast
dc.subject.wosMarine & freshwater biology
dc.subject.wosOceanography
dc.titlePrediction of parameters which affect beach nourishment performance using MARS, TLBO, and conventional regression techniques
dc.typeArticle
dc.wos.quartileQ4
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/İnşaat Mühendisliği
local.indexed.atScopus
local.indexed.atWOS

Files

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: