Publication:
Artificial neural network infused quasi oppositional learning partial reinforcement algorithm for structural design optimization of vehicle suspension components

dc.contributor.authorSait, Sadiq M.
dc.contributor.authorMehta, Pranav
dc.contributor.authorPholdee, Nantiwat
dc.contributor.authorYıldız, Betül Sultan
dc.contributor.buuauthorYıldız, Ali Rıza
dc.contributor.buuauthorYILDIZ, ALİ RIZA
dc.date.accessioned2025-01-20T06:18:15Z
dc.date.available2025-01-20T06:18:15Z
dc.date.issued2024-09-02
dc.description.abstractThis paper introduces and investigates an enhanced Partial Reinforcement Optimization Algorithm (E-PROA), a novel evolutionary algorithm inspired by partial reinforcement theory to efficiently solve complex engineering optimization problems. The proposed algorithm combines the Partial Reinforcement Optimization Algorithm (PROA) with a quasi-oppositional learning approach to improve the performance of the pure PROA. The E-PROA was applied to five distinct engineering design components: speed reducer design, step-cone pulley weight optimization, economic optimization of cantilever beams, coupling with bolted rim optimization, and vehicle suspension arm optimization problems. An artificial neural network as a metamodeling approach is used to obtain equations for shape optimization. Comparative analyses with other benchmark algorithms, such as the ship rescue optimization algorithm, mountain gazelle optimizer, and cheetah optimization algorithm, demonstrated the superior performance of E-PROA in terms of convergence rate, solution quality, and computational efficiency. The results indicate that E-PROA holds excellent promise as a technique for addressing complex engineering optimization problems.
dc.identifier.doi10.1515/mt-2024-0186
dc.identifier.endpage1863
dc.identifier.issn0025-5300
dc.identifier.issue11
dc.identifier.scopus2-s2.0-85202952940
dc.identifier.startpage1855
dc.identifier.urihttps://doi.org/10.1515/mt-2024-0186
dc.identifier.urihttps://hdl.handle.net/11452/49589
dc.identifier.volume66
dc.identifier.wos001301802000001
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherWalter De Gruyter Gmbh
dc.relation.journalMaterials Testing
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.subjectSuspension arm
dc.subjectPartial reinforcement optimization algorithm
dc.subjectShip rescue optimization algorithm
dc.subjectMountain gazelle optimizer
dc.subjectCheetah optimization algorithm
dc.subjectScience & technology
dc.subjectTechnology
dc.subjectMaterials science, characterization & testing
dc.subjectMaterials science
dc.titleArtificial neural network infused quasi oppositional learning partial reinforcement algorithm for structural design optimization of vehicle suspension components
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/Makina Mühendisliği Ana Bilim Dalı.
local.indexed.atWOS
local.indexed.atScopus
relation.isAuthorOfPublication89fd2b17-cb52-4f92-938d-a741587a848d
relation.isAuthorOfPublication.latestForDiscovery89fd2b17-cb52-4f92-938d-a741587a848d

Files