Publication:
Ifaasbus: A security- and privacy-based lightweight framework for serverless computing using iot and machine learning

dc.contributor.authorGöleç, Muhammed
dc.contributor.authorÖzturaç, Rıdvan
dc.contributor.authorPooranian, Zahra
dc.contributor.authorGill, Sukhpal Singh
dc.contributor.authorBuyya, Rajkumar
dc.contributor.buuauthorGöleç, Muhammed
dc.contributor.departmentMühendisliği Bölümü
dc.contributor.departmentElektrik Elektronik Bölümü
dc.contributor.orcid0000-0003-0146-9735
dc.contributor.researcheridAAA-5664-2022
dc.date.accessioned2024-10-14T12:59:10Z
dc.date.available2024-10-14T12:59:10Z
dc.date.issued2022-05-01
dc.description.abstractAs data of COVID-19 patients is increasing, the new framework is required to secure the data collected from various Internet of Things (IoT) devices and predict the trend of disease to reduce its spreading. This article proposes security- and privacy-based lightweight framework called iFaaSBus, which uses the concept of IoT, machine learning (ML), and function as a service (FaaS) or serverless computing to diagnose the COVID-19 disease and manages resources automatically to enable dynamic scalability. iFaaSBus offers OAuth-2.0 Authorization protocol-based privacy and JSON Web Token & Transport Layer Socket protocol-based security to secure the patient's health data. iFaaSBus outperforms response time compared to nonserverless computing while responding to up to 1100 concurrent requests. Further, the performance of various ML models is evaluated based on accuracy, precision, recall, F-score, and area under the curve (AUC) values, and the K-nearest neighbor model gives the highest accuracy rate of 97.51%.
dc.identifier.doi10.1109/TII.2021.3095466
dc.identifier.eissn1941-0050
dc.identifier.endpage3529
dc.identifier.issn1551-3203
dc.identifier.issue5
dc.identifier.scopus2-s2.0-85111600671
dc.identifier.startpage3522
dc.identifier.urihttps://doi.org/10.1109/TII.2021.3095466
dc.identifier.urihttps://ieeexplore.ieee.org/document/9476990
dc.identifier.urihttps://hdl.handle.net/11452/46386
dc.identifier.volume18
dc.identifier.wos000752019100066
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherIEEE
dc.relation.journalIeee Transactions on Industrial Informatics
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectCovid-19
dc.subjectServers
dc.subjectSecurity
dc.subjectDiseases
dc.subjectPrivacy
dc.subjectInternet of things
dc.subjectAuthorization
dc.subjectArtificial intelligence (ai)
dc.subjectFunction as a service (faas)
dc.subjectInternet of things (iot)
dc.subjectMachine learning (ml)
dc.subjectSecurity and privacy
dc.subjectServerless computing
dc.subjectScience & technology
dc.subjectTechnology
dc.subjectAutomation & control systems
dc.subjectComputer science, interdisciplinary applications
dc.subjectEngineering, industrial
dc.subjectAutomation & control systems
dc.subjectComputer science
dc.subjectEngineering
dc.titleIfaasbus: A security- and privacy-based lightweight framework for serverless computing using iot and machine learning
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentMühendisliği Bölümü/Elektrik Elektronik Bölümü
local.indexed.atWOS
local.indexed.atScopus

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
Göleç_vd_2022.pdf
Size:
961.57 KB
Format:
Adobe Portable Document Format