Yayın:
Positive definite quadratic forms, elliptic curves and cubic congruences

dc.contributor.authorTekcan, Ahmet
dc.contributor.buuauthorTEKCAN, AHMET
dc.contributor.departmentFen Fakültesi
dc.contributor.departmentMatematik Bölümü
dc.contributor.scopusid55883777900
dc.date.accessioned2025-08-06T23:33:03Z
dc.date.issued2010-07-01
dc.description.abstractLet F(x, y) = ax 2 + bxy + cy 2 be a positive definite binary quadratic form with discriminant Δ whose base points lie on the line x = -1/m for an integer m ≥ 2, let p be a prime number and let F p be a finite field. Let E F: y 2= ax 3 + bx 2 + cx be an elliptic curve over F p and let C F: ax 3 + bx 2 + cx ≡ 0(mod p) be the cubic congruence corresponding to F. In this work we consider some properties of positive definite quadratic forms, elliptic curves and cubic congruences.
dc.identifier.endpage385
dc.identifier.issn2010-376X
dc.identifier.scopus2-s2.0-78751621755
dc.identifier.startpage381
dc.identifier.urihttps://hdl.handle.net/11452/53935
dc.identifier.volume67
dc.indexed.scopusScopus
dc.language.isoen
dc.relation.journalWorld Academy of Science Engineering and Technology
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectElliptic curves
dc.subjectCubic congruence
dc.subjectBinary quadratic form
dc.subject.scopusReal Quadratic Fields and Pell's Equation
dc.titlePositive definite quadratic forms, elliptic curves and cubic congruences
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentFen Fakültesi/Matematik Bölümü
relation.isAuthorOfPublication17944028-a562-4782-b38f-cb890c6f31bf
relation.isAuthorOfPublication.latestForDiscovery17944028-a562-4782-b38f-cb890c6f31bf

Dosyalar