Yayın:
Ultrasonic algae control system performance evaluation using an artificial neural network in the Doganci dam reservoir (Bursa, Turkey): A case study

dc.contributor.buuauthorElmacı, Ayşe
dc.contributor.buuauthorÖzengin, Nihan
dc.contributor.buuauthorYonar, Taner
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentÇevre Mühendisliği Bölümü
dc.contributor.orcid0000-0002-0387-0656
dc.contributor.orcid0000-0002-1762-1140
dc.contributor.researcheridAAD-9468-2019
dc.contributor.researcheridAAG-9866-2021
dc.contributor.researcheridAAH-1475-2021
dc.contributor.scopusid16230326600
dc.contributor.scopusid16231232500
dc.contributor.scopusid6505923781
dc.date.accessioned2023-02-01T10:34:30Z
dc.date.available2023-02-01T10:34:30Z
dc.date.issued2017
dc.description.abstractUltrasound is a well-established technology, but it has been applied only recently to control algal blooms. The main purpose of this study is to determine the appropriateness of field measurements for evaluating the performance of an ultrasonic algae control system using an artificial neural network (ANN) in the Doganci Dam Reservoir (Bursa, TURKEY). Within this study, data were obtained using the NeuroSolutions 5.06 model. Each sample was characterized using ten independent variables (time, total organic carbon (TOC), pH, water temperature (T-water), dissolved oxygen (DO), suspended solids (SS), the Secchi disc depth (SDD), open-water evaporation (E), heat flux density (H), air temperature (T-air), and one dependent variable (chlorophyll-a (Chl-a)). The correlation coefficients between the neural network estimates and field measurements were as high as 0.9747 for Chl-a. The results indicated that the adopted Levenberg-Marquardt back-propagation algorithm yields satisfactory estimates with acceptably low mean square error (MSE) values.
dc.identifier.citationElmacı, A. vd. (2017). ''Ultrasonic algae control system performance evaluation using an artificial neural network in the Doganci dam reservoir (Bursa, Turkey): A case study''. Desalination and Water Treatment, 87, 131-139.
dc.identifier.doi10.5004/dwt.2017.20810
dc.identifier.endpage139
dc.identifier.issn1944-3994
dc.identifier.scopus2-s2.0-85032006153
dc.identifier.startpage131
dc.identifier.urihttps://doi.org/10.5004/dwt.2017.20810
dc.identifier.uri1944-3986
dc.identifier.urihttps://www.cabdirect.org/cabdirect/abstract/20183075201
dc.identifier.urihttp://hdl.handle.net/11452/30779
dc.identifier.volume87
dc.identifier.wos000415820700011
dc.indexed.wosSCIE
dc.language.isoen
dc.publisherDesalination
dc.relation.journalDesalination and Water Treatment
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectEngineering
dc.subjectWater resources
dc.subjectArtificial neural networks
dc.subjectLevenberg-marquardt algorithm
dc.subjectReservoirs
dc.subjectUltrasonic algae control
dc.subjectCyanobacterial bloom control
dc.subjectFeedforward networks
dc.subjectWater
dc.subjectPrediction
dc.subjectIrradiation
dc.subjectFluctuations
dc.subjectAlgorithm
dc.subjectRadiation
dc.subjectDepth
dc.subjectLake
dc.subjectBursa [Turkey]
dc.subjectTurkey
dc.subjectAlgae
dc.subjectAlgal bloom
dc.subjectArtificial neural network
dc.subjectBack propagation
dc.subjectControl system
dc.subjectDam
dc.subjectError analysis
dc.subjectPerformance assessment
dc.subjectReservoir
dc.subjectUltrasonics
dc.subjectWater treatment
dc.subject.scopusPrediction; Flood Forecasting; Water Tables
dc.subject.wosEngineering, chemical
dc.subject.wosWater resources
dc.titleUltrasonic algae control system performance evaluation using an artificial neural network in the Doganci dam reservoir (Bursa, Turkey): A case study
dc.typeArticle
dc.wos.quartileQ3
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/Çevre Mühendisliği Bölümü
local.indexed.atScopus
local.indexed.atWOS

Dosyalar

Lisanslı seri

Şimdi gösteriliyor 1 - 1 / 1
Placeholder
Ad:
license.txt
Boyut:
1.71 KB
Format:
Item-specific license agreed upon to submission
Açıklama