Yayın: Ultrasonic algae control system performance evaluation using an artificial neural network in the Doganci dam reservoir (Bursa, Turkey): A case study
| dc.contributor.buuauthor | Elmacı, Ayşe | |
| dc.contributor.buuauthor | Özengin, Nihan | |
| dc.contributor.buuauthor | Yonar, Taner | |
| dc.contributor.department | Mühendislik Fakültesi | |
| dc.contributor.department | Çevre Mühendisliği Bölümü | |
| dc.contributor.orcid | 0000-0002-0387-0656 | |
| dc.contributor.orcid | 0000-0002-1762-1140 | |
| dc.contributor.researcherid | AAD-9468-2019 | |
| dc.contributor.researcherid | AAG-9866-2021 | |
| dc.contributor.researcherid | AAH-1475-2021 | |
| dc.contributor.scopusid | 16230326600 | |
| dc.contributor.scopusid | 16231232500 | |
| dc.contributor.scopusid | 6505923781 | |
| dc.date.accessioned | 2023-02-01T10:34:30Z | |
| dc.date.available | 2023-02-01T10:34:30Z | |
| dc.date.issued | 2017 | |
| dc.description.abstract | Ultrasound is a well-established technology, but it has been applied only recently to control algal blooms. The main purpose of this study is to determine the appropriateness of field measurements for evaluating the performance of an ultrasonic algae control system using an artificial neural network (ANN) in the Doganci Dam Reservoir (Bursa, TURKEY). Within this study, data were obtained using the NeuroSolutions 5.06 model. Each sample was characterized using ten independent variables (time, total organic carbon (TOC), pH, water temperature (T-water), dissolved oxygen (DO), suspended solids (SS), the Secchi disc depth (SDD), open-water evaporation (E), heat flux density (H), air temperature (T-air), and one dependent variable (chlorophyll-a (Chl-a)). The correlation coefficients between the neural network estimates and field measurements were as high as 0.9747 for Chl-a. The results indicated that the adopted Levenberg-Marquardt back-propagation algorithm yields satisfactory estimates with acceptably low mean square error (MSE) values. | |
| dc.identifier.citation | Elmacı, A. vd. (2017). ''Ultrasonic algae control system performance evaluation using an artificial neural network in the Doganci dam reservoir (Bursa, Turkey): A case study''. Desalination and Water Treatment, 87, 131-139. | |
| dc.identifier.doi | 10.5004/dwt.2017.20810 | |
| dc.identifier.endpage | 139 | |
| dc.identifier.issn | 1944-3994 | |
| dc.identifier.scopus | 2-s2.0-85032006153 | |
| dc.identifier.startpage | 131 | |
| dc.identifier.uri | https://doi.org/10.5004/dwt.2017.20810 | |
| dc.identifier.uri | 1944-3986 | |
| dc.identifier.uri | https://www.cabdirect.org/cabdirect/abstract/20183075201 | |
| dc.identifier.uri | http://hdl.handle.net/11452/30779 | |
| dc.identifier.volume | 87 | |
| dc.identifier.wos | 000415820700011 | |
| dc.indexed.wos | SCIE | |
| dc.language.iso | en | |
| dc.publisher | Desalination | |
| dc.relation.journal | Desalination and Water Treatment | |
| dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi | |
| dc.rights | info:eu-repo/semantics/closedAccess | |
| dc.subject | Engineering | |
| dc.subject | Water resources | |
| dc.subject | Artificial neural networks | |
| dc.subject | Levenberg-marquardt algorithm | |
| dc.subject | Reservoirs | |
| dc.subject | Ultrasonic algae control | |
| dc.subject | Cyanobacterial bloom control | |
| dc.subject | Feedforward networks | |
| dc.subject | Water | |
| dc.subject | Prediction | |
| dc.subject | Irradiation | |
| dc.subject | Fluctuations | |
| dc.subject | Algorithm | |
| dc.subject | Radiation | |
| dc.subject | Depth | |
| dc.subject | Lake | |
| dc.subject | Bursa [Turkey] | |
| dc.subject | Turkey | |
| dc.subject | Algae | |
| dc.subject | Algal bloom | |
| dc.subject | Artificial neural network | |
| dc.subject | Back propagation | |
| dc.subject | Control system | |
| dc.subject | Dam | |
| dc.subject | Error analysis | |
| dc.subject | Performance assessment | |
| dc.subject | Reservoir | |
| dc.subject | Ultrasonics | |
| dc.subject | Water treatment | |
| dc.subject.scopus | Prediction; Flood Forecasting; Water Tables | |
| dc.subject.wos | Engineering, chemical | |
| dc.subject.wos | Water resources | |
| dc.title | Ultrasonic algae control system performance evaluation using an artificial neural network in the Doganci dam reservoir (Bursa, Turkey): A case study | |
| dc.type | Article | |
| dc.wos.quartile | Q3 | |
| dspace.entity.type | Publication | |
| local.contributor.department | Mühendislik Fakültesi/Çevre Mühendisliği Bölümü | |
| local.indexed.at | Scopus | |
| local.indexed.at | WOS |
Dosyalar
Lisanslı seri
1 - 1 / 1
