Yayın:
Corn yield prediction in site-specific management zones using proximal soil sensing, remote sensing, and machine learning approach

dc.contributor.authorBantchina, Bere Benjamin
dc.contributor.authorQaswar, Muhammad
dc.contributor.authorArslan, Selçuk
dc.contributor.authorUlusoy, Yahya
dc.contributor.authorGündoğdu, Kemal Sulhi
dc.contributor.authorTekin, Yücel
dc.contributor.authorMouazen, Abdul Mounem
dc.contributor.buuauthorBantchina, Bere Benjamin
dc.contributor.buuauthorARSLAN, SELÇUK
dc.contributor.buuauthorULUSOY, YAHYA
dc.contributor.buuauthorGÜNDOĞDU, KEMAL SULHİ
dc.contributor.buuauthorTEKİN, YÜCEL
dc.contributor.departmentFen Bilimleri Enstitüsü
dc.contributor.departmentBiyosistem Mühendisliği Bölümü
dc.contributor.departmentZiraat Fakültesi
dc.contributor.departmentTeknik Bilimler Meslek Yüksekokulu
dc.contributor.departmentMakine ve Metal Teknolojileri Bölümü
dc.contributor.orcid0000-0003-4636-1234
dc.contributor.orcid0000-0002-2593-426X
dc.contributor.researcheridJTU-4080-2023
dc.contributor.researcheridR-8043-2016
dc.contributor.researcheridJYG-4245-2024
dc.contributor.researcheridABI-4047-2020
dc.contributor.researcheridGGM-1129-2022
dc.date.accessioned2025-02-14T10:59:49Z
dc.date.available2025-02-14T10:59:49Z
dc.date.issued2024-08-17
dc.description.abstractThe integration of advanced technologies, such as soil proximal sensing, remote sensing, and machine learning, has revolutionized agricultural practices, particularly for corn yield prediction. This interdisciplinary approach harnesses the power of cutting-edge sensors to gather high-resolution data on soil conditions coupled with remote sensing technologies that provide a comprehensive view of crop health and environmental factors. This study aimed to evaluate the feasibility of accurately predicting corn ( Zea mays) ) yield at the management zones (MZs) level using the fusion of visible and near-infrared spectroscopy (Vis-NIRS)-derived soil properties, remote sensing-derived crop spectral indices, and machine learning algorithms. Clustering analysis was used to develop MZs to implement variable-rate nitrogen fertilization (VRNF) in a drip-irrigated corn field. Site-specific models to forecast corn yield at the MZs level were developed using Sentinel 2A-derived spectral indices and machine learning regression algorithms. Partial least squares Vis-NIR spectral regression modelling for MZs development achieved high accuracy in terms of the coefficient of determination (R2) 2 ) which was ranged from 0.60 to 0.99 in cross-validation and from 0.52 to 0.78 in online validation. The developed corn yield prediction models demonstrated moderate efficacy, as evidenced by the R2 2 values ranging from 0.50 to 0.71. Further research should include supplementary spectral crop canopy indices and the application of alternative deep and machine learning approaches to improve the accuracy of the prediction models.
dc.description.sponsorshipEuropean Union (EU) - 862665
dc.description.sponsorshipFWO - S007621N - 1282923N
dc.identifier.doi10.1016/j.compag.2024.109329
dc.identifier.issn0168-1699
dc.identifier.scopus2-s2.0-85201380121
dc.identifier.urihttps://doi.org/10.1016/j.compag.2024.109329
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S0168169924007208
dc.identifier.urihttps://hdl.handle.net/11452/50427
dc.identifier.volume225
dc.identifier.wos001297644300001
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherElsevier Sci Ltd
dc.relation.journalComputers and Electronics in Agriculture
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.relation.tubitak120N787
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectNear-infrared spectroscopy
dc.subjectVariable-rate fertilization
dc.subjectPrecision agriculture
dc.subjectOnline measurement
dc.subjectSatellite data
dc.subjectIn-situ
dc.subjectNitrogen
dc.subjectSensor
dc.subjectIndex
dc.subjectTechnologies
dc.subjectVariable rate fertilization
dc.subjectCorn yield prediction
dc.subjectProximal soil sensing
dc.subjectRemote sensing
dc.subjectManagement zones
dc.subjectMachine learning
dc.subjectAgriculture
dc.subjectComputer science
dc.titleCorn yield prediction in site-specific management zones using proximal soil sensing, remote sensing, and machine learning approach
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentFen Bilimleri Enstitüsü/Biyosistem Mühendisliği Bölümü
local.contributor.departmentZiraat Fakültesi/Biyosistem Mühendisliği Bölümü
local.contributor.departmentTeknik Bilimler Meslek Yüksekokulu/Makine ve Metal Teknolojileri Bölümü
local.indexed.atWOS
local.indexed.atScopus
relation.isAuthorOfPublication9b4502dc-6cb5-4d3a-9630-5d68f82ba23e
relation.isAuthorOfPublication1c7a2371-0a45-4eca-ba65-589d03a62d53
relation.isAuthorOfPublication09d5e02c-facd-49b4-ba46-64ae7fb0c90c
relation.isAuthorOfPublication2e651285-91d3-4408-ab1a-c0292101c026
relation.isAuthorOfPublication.latestForDiscovery9b4502dc-6cb5-4d3a-9630-5d68f82ba23e

Dosyalar