Publication: The next step of the word problem over monoids
dc.contributor.author | Karpuz, Eylem Güzel | |
dc.contributor.author | Ateş, Fırat | |
dc.contributor.author | Çevik, Ahmet Sinan | |
dc.contributor.author | Maden, Ayşe Dilek Güngör | |
dc.contributor.buuauthor | Cangül, İsmail Naci | |
dc.contributor.department | Fen Edebiyat Fakültesi | |
dc.contributor.department | MatematikBölümü | |
dc.contributor.orcid | 0000-0002-0700-5774 | |
dc.contributor.orcid | 0000-0002-0700-5774 | |
dc.contributor.researcherid | ABA-6206-2020 | |
dc.contributor.researcherid | J-3505-2017 | |
dc.contributor.scopusid | 57189022403 | |
dc.date.accessioned | 2022-03-30T06:17:59Z | |
dc.date.available | 2022-03-30T06:17:59Z | |
dc.date.issued | 2011-10 | |
dc.description.abstract | It is known that a group presentation P can be regarded as a 2-complex with a single 0-cell. Thus we can consider a 3-complex with a single 0-cell which is known as a 3-presentation. Similarly, we can also consider 3-presentations for monoids. In this paper, by using spherical monoid pictures, we show that there exists a finite 3-monoid-presentation which has unsolvable "generalized identity problem'' that can be thought as the next step (or one-dimension higher) of the word problem for monoids. We note that the method used in this paper has chemical and physical applications. | |
dc.description.sponsorship | Selçuk Üniversitesi | |
dc.identifier.citation | Karpuz, E. G. vd. (2011). "The next step of the word problem over monoids". Applied Mathematics and Computation, 218(3), 794-798. | |
dc.identifier.endpage | 798 | |
dc.identifier.issn | 0096-3003 | |
dc.identifier.issn | 1873-5649 | |
dc.identifier.issue | 3 | |
dc.identifier.scopus | 2-s2.0-80052269740 | |
dc.identifier.startpage | 794 | |
dc.identifier.uri | https://doi.org/10.1016/j.amc.2011.03.076 | |
dc.identifier.uri | https://www.sciencedirect.com/science/article/pii/S0096300311004449 | |
dc.identifier.uri | http://hdl.handle.net/11452/25419 | |
dc.identifier.volume | 218 | |
dc.identifier.wos | 000294298400030 | |
dc.indexed.wos | SCIE | |
dc.language.iso | en | |
dc.publisher | Elsevier Science | |
dc.relation.bap | 2006/40 | |
dc.relation.bap | 2008/31 | |
dc.relation.bap | 2008/54 | |
dc.relation.collaboration | Yurt içi | |
dc.relation.journal | Applied Mathematics and Computation | |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.subject | Mathematics | |
dc.subject | Monoid pictures | |
dc.subject | Word problem | |
dc.subject | Presentation | |
dc.subject | Identity problem | |
dc.subject | Homological finiteness condition | |
dc.subject | Group presentation | |
dc.subject | Identity problem | |
dc.subject | Monoid pictures | |
dc.subject | Monoids | |
dc.subject | One-dimension | |
dc.subject | Physical application | |
dc.subject | Presentation | |
dc.subject | Word problem | |
dc.subject | Algebra | |
dc.subject.scopus | Monoids; Inverse Semigroup; Word Problem | |
dc.subject.wos | Mathematics, applied | |
dc.title | The next step of the word problem over monoids | |
dc.type | Article | |
dc.wos.quartile | Q1 | |
dspace.entity.type | Publication | |
local.contributor.department | Fen Edebiyat Fakültesi/MatematikBölümü | |
local.indexed.at | Scopus | |
local.indexed.at | WOS |