Yayın:
Size dependent dynamics of a bi-directional functionally graded nanobeam via machine learning methods

dc.contributor.authorDeliktas, Babur
dc.contributor.buuauthorDELİKTAŞ, BABÜR
dc.contributor.buuauthorYAYLI, MUSTAFA ÖZGÜR
dc.contributor.buuauthorAKPINAR, MURAT
dc.contributor.buuauthorUZUN, BÜŞRA
dc.contributor.buuauthorTariq, Aiman
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentİnşaat Mühendisliği Ana Bilim Dalı
dc.contributor.orcid0009-0002-1683-1987
dc.contributor.researcheridABE-6914-2020
dc.contributor.researcheridLCS-1995-2024
dc.contributor.researcheridKEH-1136-2024
dc.contributor.researcheridAAJ-6390-2021
dc.contributor.researcheridAAH-8687-2021
dc.date.accessioned2025-10-21T08:55:57Z
dc.date.issued2025-01-01
dc.description.abstractThis study explores the lateral vibration behavior of bi-directional functionally graded nanobeams using a combination of semi-analytical and machine learning approaches. The semi-analytical method uses the Fourier sine series and Stokes' transform for the deflection function of a bi-directional functionally graded nanobeam constrained by elastic springs at both ends and considers nonlocal modified couple stress theory to account for size effects. In the last step of the method, an eigenvalue problem is derived and the resulting frequency values are then used to train machine learning models, including extreme gradient boosting (XGB), artificial neural networks (ANN) and decision tree regression (DTR). The models' ability to predict the nanobeam's natural frequencies is evaluated using metrics like R-2, MAE, MAPE, RMSE, and the A20-index, alongside visual tools such as scatter plots, radar plots, and Taylor diagrams. The results indicate that ML models can accurately predict the natural frequencies of a bi-directional functionally graded nanobeams when provided with sufficient training data. In particular, ANN demonstrated exceptional generalization capability by achieving the highest R-2 and the lowest MAE, MAPE, and RMSE on both the training and testing datasets. The impact of various effects on vibration frequencies is detailed through a series of graphs and tables.
dc.identifier.doi10.12989/anr.2025.18.1.033
dc.identifier.endpage52
dc.identifier.issn2287-237X
dc.identifier.issue1
dc.identifier.scopus2-s2.0-85218406960
dc.identifier.startpage33
dc.identifier.urihttps://doi.org/10.12989/anr.2025.18.1.033
dc.identifier.urihttps://hdl.handle.net/11452/55780
dc.identifier.volume18
dc.identifier.wos001415398300002
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherTechno-press
dc.relation.journalAdvances in nano research
dc.subjectStrain gradient theory
dc.subjectInformed neural-network
dc.subjectOrder beam theory
dc.subjectFree-vibration
dc.subjectIsogeometric analysis
dc.subjectThermomechanical vibration
dc.subjectModel
dc.subjectRegression
dc.subjectStability
dc.subjectArtificial neural network
dc.subjectBi-directional functionally graded nanobeam
dc.subjectMachine learning
dc.subjectNonlocal modified couple stress theory
dc.subjectSize effect
dc.subjectScience & Technology
dc.subjectTechnology
dc.subjectNanoscience & Nanotechnology
dc.subjectMaterials Science, Multidisciplinary
dc.subjectScience & Technology - Other Topics
dc.subjectMaterials Science
dc.titleSize dependent dynamics of a bi-directional functionally graded nanobeam via machine learning methods
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/İnşaat Mühendisliği Ana Bilim Dalı
local.indexed.atWOS
local.indexed.atScopus
relation.isAuthorOfPublication61c4d3a5-cfbe-45da-969f-1a074b57717e
relation.isAuthorOfPublicationf9782842-abc1-42a9-a3c2-76a6464363be
relation.isAuthorOfPublicationdb952b13-125c-47b9-a3cf-e611b79dc97c
relation.isAuthorOfPublicationb6065bca-cfbf-46a6-83bc-4d662b46f3df
relation.isAuthorOfPublication.latestForDiscovery61c4d3a5-cfbe-45da-969f-1a074b57717e

Dosyalar