Publication: Kompozit malzemeler ve yapay zeka optimizasyon teknikleri ile yüksek performanslı otomotiv darbe sönümleme bileşenlerinin geliştirilmesi
Date
Authors
Authors
Kopar, Mehmet
Advisor
Yıldız, Ali Rıza
Language
Type
Publisher:
Bursa Uludağ Üniversitesi
Journal Title
Journal ISSN
Volume Title
Abstract
Bu tez çalışması kapsamında otomotiv pasif güvenlik sistemlerinden biri olan çarpışma kutuları ve otomotiv yan barları geliştirilmiştir. Bu tez kapsamında tasarlanan çarpışma kutuları eklemeli imalat yöntemlerinden biri olan eriyik biriktirme yöntemi (FDM) ile PLA, ABS, PETG ve CF15PET malzeme kullanılarak üretilmiş ve çarpışma performanslarının incelenmesi amacıyla düşey darbe testi ile 2 kJ yük altında testler gerçekleştirilmiştir. Testlerin sonucunda en yüksek çarpışma performansına sahip olan birinci tasarımlı PLA ve ABS çarpışma kutuları özgül enerji emilimlerinin geliştirilmesi ve ağırlıklarının azaltılması amaçlanarak genetik algoritma kullanılarak şekil optimizasyonları yapılmıştır. Şekil optimizasyonu sonrasında belirlenen yeni ölçüler ile tasarımlar yapılarak eklemeli imalat yöntemi ile tekrardan üretimleri yapılmıştır. Optimize edilen çarpışma kutularının çarpışma performanslarının geliştirilmesi amacıyla filament sarma yöntemi ile ±45° ve 90° sarım açılarına sahip olan cam ve karbon fiber takviyeli kompozit yapılar ile hibrit çarpışma kutuları geliştirilmiştir. Geliştirilen hibrit çarpışma kutularının çarpışma performanslarının incelenmesi amacıyla 4 kJ düşey darbe ile testler gerçekleştirilmiştir. Yapılan testler, sonlu elemanlar yöntemi kullanılarak doğrulaması yapılmıştır. Yapılan testler sonucunda tüm hibrit çarpışma kutularının 4 kJ enerjinin tamamının emilimini sağladığı ve hibrit yapıların plastik yapıların enerji emilimini arttırdığı gözlenmiştir. Burada sarım açılarının çarpışma anında çarpışma kutularının katlanma davranışını etkilediği belirlenmiştir. Otomotiv yan kapı barlarının geliştirilmesi için hacim ve yüzey merkezli kübik kafes yapılar ABS, PLA ve CF15PET malzemeler ile eklemeli imalat yöntemi kullanılarak üretilerek alüminyum silindir ve kare borular ile hibritleştirilmiştir. Yapılan yarı statik testler sonucunda kafes yapıların yan kapı barlarının enerji emilimini geliştirdikleri belirlenmiştir.
Within the scope of this thesis, crash boxes and automotive side bars, which are one of the automotive passive safety systems, have been developed. The crash boxes designed within the scope of this thesis were produced using PLA, ABS, PETG and CF15PET materials using the fused deposition method (FDM), which is one of the additive manufacturing methods, and tests were carried out under a vertical impact test and 2 kJ load in order to examine their crash performance. As a result of the tests, the first design PLA and ABS crash boxes with the highest crash performance were optimized using genetic algorithms in order to improve their specific energy absorption and reduce their weight. After the shape optimization, designs were made with the new measurements determined and they were re-manufactured using the additive manufacturing method. In order to improve the crash performance of the optimized crash boxes, glass and carbon fiber reinforced composite structures with ±45° and 90° winding angles were developed with the filament winding method and hybrid crash boxes. In order to examine the crash performance of the developed hybrid crash boxes, tests were carried out with a 4 kJ vertical impact. The tests were verified using the finite element method. As a result of the tests, it was observed that all hybrid crash boxes absorbed the entire 4 kJ energy and that hybrid structures increased the energy absorption of plastic structures. Here, it was determined that the winding angles affected the folding behavior of the crash boxes at the time of the collision. For the development of automotive side door bars, body and surface-centered cubic lattice structures were produced using the additive manufacturing method with ABS, PLA and CF15PET materials and hybridized with aluminum cylinders and square pipes. As a result of the semi-static tests, it was determined that the lattice structures improved the energy absorption of the side door bars.
Within the scope of this thesis, crash boxes and automotive side bars, which are one of the automotive passive safety systems, have been developed. The crash boxes designed within the scope of this thesis were produced using PLA, ABS, PETG and CF15PET materials using the fused deposition method (FDM), which is one of the additive manufacturing methods, and tests were carried out under a vertical impact test and 2 kJ load in order to examine their crash performance. As a result of the tests, the first design PLA and ABS crash boxes with the highest crash performance were optimized using genetic algorithms in order to improve their specific energy absorption and reduce their weight. After the shape optimization, designs were made with the new measurements determined and they were re-manufactured using the additive manufacturing method. In order to improve the crash performance of the optimized crash boxes, glass and carbon fiber reinforced composite structures with ±45° and 90° winding angles were developed with the filament winding method and hybrid crash boxes. In order to examine the crash performance of the developed hybrid crash boxes, tests were carried out with a 4 kJ vertical impact. The tests were verified using the finite element method. As a result of the tests, it was observed that all hybrid crash boxes absorbed the entire 4 kJ energy and that hybrid structures increased the energy absorption of plastic structures. Here, it was determined that the winding angles affected the folding behavior of the crash boxes at the time of the collision. For the development of automotive side door bars, body and surface-centered cubic lattice structures were produced using the additive manufacturing method with ABS, PLA and CF15PET materials and hybridized with aluminum cylinders and square pipes. As a result of the semi-static tests, it was determined that the lattice structures improved the energy absorption of the side door bars.
Description
Source:
Keywords:
Keywords
Kompozit çarpışma kutuları, Eklemeli imalat, Optimizasyon, Yan kapı barı, Kafes yapılar, Composite crash boxes, Additive manufacturing, Optimization, Side door bar, Lattice structures