Yayın:
Forecasting renewable energy consumption with hydrogen integration: A comprehensive regression approach

dc.contributor.authorGüçyetmez, Mehmet
dc.contributor.authorAkkaya, Sıtkı
dc.contributor.buuauthorHAYBER, ŞEKİP ESAT
dc.contributor.buuauthorUYAR, MURAT
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentElektrik ve Elektronik Mühendisliği Ana Bilim Dalı
dc.contributor.orcid0000-0001-7243-7939
dc.contributor.orcid0000-0003-0062-3817
dc.contributor.researcheridJCT-7723-2023
dc.contributor.researcheridV-2823-2018
dc.date.accessioned2025-10-21T09:14:14Z
dc.date.issued2025-06-27
dc.description.abstractInvestments in hydrogen energy and its development and dissemination depend on the ability to produce longterm, high-accuracy forecasts. However, current forecasts for hydrogen energy remain insufficient. In T & uuml;rkiye, a prominent and influential country in terms of population and economy, solar and wind energy installations have increased significantly in the last two decades parallel to the world and have reached a certain saturation. In the coming years, similar to the growth observed in wind and solar energy, hydrogen energy consumption, considered the future energy source, is expected to increase nationwide. In this study, forecasts for renewable energy consumption, including hydrogen energy, are developed for T & uuml;rkiye using eight different regression models: autoregressive (AR), autoregressive with exogenous input (ARX), moving average (MA), autoregressive moving average (ARMA), nonlinear ARX (NLARX), autoregressive integrated moving average (ARIMA), seasonal ARIMA (SARIMA), and extended SARIMA (ESARIMA). These models are based on changes in T & uuml;rkiye's renewable energy consumption and global hydrogen energy consumption trends. Performance evaluation metrics are then employed to assess the models' effectiveness, and both scientific and economic insights are drawn to guide future hydrogen energy strategies in T & uuml;rkiye. The findings reveal that ARIMA-based approaches yield the lowest errors among the eight models, even at lower regression orders. Specifically, while the first-order ARIMA model offered faster computation times, the fourth-order ESARIMA model achieved the highest accuracy, with MSE and RMSE values of 0.035 and 0.187, respectively. Overall, the study concludes that ARIMA-based models provide the most stable long-term forecasts for hydrogen energy consumption.
dc.identifier.doi10.1016/j.ijhydene.2025.03.244
dc.identifier.endpage993
dc.identifier.issn0360-3199
dc.identifier.scopus2-s2.0-105000242828
dc.identifier.startpage981
dc.identifier.urihttps://doi.org/10.1016/j.ijhydene.2025.03.244
dc.identifier.urihttps://hdl.handle.net/11452/55921
dc.identifier.volume142
dc.identifier.wos001512858200015
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherPergamon-elsevier science ltd
dc.relation.journalInternational journal of hydrogen energy
dc.subjectElectrıcıty consumptıon
dc.subjectDetermınants
dc.subjectTechnologıes
dc.subjectInvestments
dc.subjectTransıtıon
dc.subjectBıomass
dc.subjectTurkey
dc.subjectHydrogen energy
dc.subjectRegression models
dc.subjectLong-term forecasting
dc.subjectT & uuml;rkiye
dc.subjectScience & Technology
dc.subjectPhysical Sciences
dc.subjectTechnology
dc.subjectChemistry, Physical
dc.subjectElectrochemistry
dc.subjectEnergy & Fuels
dc.subjectChemistry
dc.subjectEnergy & Fuels
dc.titleForecasting renewable energy consumption with hydrogen integration: A comprehensive regression approach
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/Elektrik ve Elektronik Mühendisliği Ana Bilim Dalı
local.indexed.atWOS
local.indexed.atScopus
relation.isAuthorOfPublicationdff5e1ef-6b19-4f8e-9a7d-91e1f44a6773
relation.isAuthorOfPublication2b7e6090-8c83-4b82-a0c9-f479024ebdc4
relation.isAuthorOfPublication.latestForDiscoverydff5e1ef-6b19-4f8e-9a7d-91e1f44a6773

Dosyalar

Orijinal seri

Şimdi gösteriliyor 1 - 1 / 1
Küçük Resim
Ad:
Uyar_vd_2025.pdf
Boyut:
9.7 MB
Format:
Adobe Portable Document Format