Yayın:
Some properties of the minimal polynomials of 2cos(pi/q) for odd q

Placeholder

Tarih

Akademik Birimler

Kurum Yazarları

Özgür, Birsen
Demirci, Musa
Yurttaş, Aysun
Cangül, İsmail Naci

Yazarlar

Simos, T. E.

Danışman

Dil

Yayıncı:

Amer Inst Pyhsics

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Özet

The number lambda(q) = 2cos pi/q, q is an element of N, q >= 3, appears in the study of Hecke groups which are Fuchsian groups, and in the study of regular polyhedra. There are many results about the minimal polynomial of this algebraic number. Here we obtain the minimal polynomial of this number by means of the better known Chebycheff polynomials for odd q and give some of their properties.

Açıklama

Bu çalışma, 19-25 Eylül 2011 tarihleri arasında Halkidiki[Yunanistan]’da düzenlenen International Conference on Numerical Analysis and Applied Mathematics (ICNAAM)’da bildiri olarak sunulmuştur.

Kaynak:

Anahtar Kelimeler:

Konusu

Mathematics, Hecke groups, Roots of unity, Minimal polynomials, Chebycheff polynomials

Alıntı

Özgür, B. vd. (2011). "Some properties of the minimal polynomials of 2cos(pi/q) for odd q". ed. T. E. Simos. AIP Conference Proceedings, Numerical Analysis and Applied Mathematics Icnaam 2011: International Conference on Numerical Analysis and Applied Mathematics, 1389, 353-356.

Endorsement

Review

Supplemented By

Referenced By

0

Views

0

Downloads

View PlumX Details