Yayın:
On spherical product surfaces in E3

dc.contributor.authorBayram, Bengü
dc.contributor.authorÖztürk, Günay
dc.contributor.authorUgail, Hassan
dc.contributor.authorEarnshaw, R. A.
dc.contributor.authorQahwaji, R. S. R.
dc.contributor.authorWillis, P. J.
dc.contributor.buuauthorArslan, Kadri
dc.contributor.buuauthorBulca, Betül
dc.contributor.departmentFen Edebiyat Fakültesi
dc.contributor.departmentMatematik Ana Bilim Dalı
dc.contributor.orcid0000-0001-5861-0184
dc.contributor.orcid0000-0002-1440-7050
dc.contributor.researcheridAAG-8775-2021
dc.contributor.researcheridAAG-7693-2021
dc.contributor.scopusid6603079141
dc.contributor.scopusid35226209600
dc.date.accessioned2022-04-21T11:51:00Z
dc.date.available2022-04-21T11:51:00Z
dc.date.issued2009
dc.descriptionBu çalışma, 07-11 Eylül 2009 tarihleri arasında Bradford[İngiltere]’da düzenlenen International Conference on Cyberworlds (CW 2009)’da bildiri olarak sunulmuştur.
dc.description.abstractIn the present study we consider spherical product surfaces X = alpha circle times beta of two 2D curves in E-3. We prove that if a spherical product surface patch X = alpha circle times beta has vanishing Gaussian curvature K (i.e. a flat surface) then either alpha or beta is a straight line. Further, we prove that if alpha(u) is a straight line and beta(v) is a 2D curve then the spherical product is a non-minimal and flat surface. We also prove that if beta(v) is a straight line passing through origin and alpha(u) is any 2D curve (which is not a line) then the spherical product is both minimal and flat. We also give some examples of spherical product surface patches with potential applications to visual cyberworlds.
dc.description.sponsorshipIEEE Comp Soc
dc.description.sponsorshipACM
dc.description.sponsorshipEurographics
dc.identifier.citationArslan, K. vd. (2009). "On spherical product surfaces in E3". ed. Hassan Ugail. vd. 2009 International Conference on Cyberworlds, 132-137.
dc.identifier.doi10.1109/CW.2009.64
dc.identifier.endpage137
dc.identifier.isbn978-1-4244-4864-7
dc.identifier.scopus2-s2.0-72349094419
dc.identifier.startpage132
dc.identifier.urihttps://doi.org/10.1109/CW.2009.64
dc.identifier.urihttps://ieeexplore.ieee.org/document/5279659
dc.identifier.urihttp://hdl.handle.net/11452/25961
dc.identifier.wos000274326100019
dc.indexed.wosCPCIS
dc.language.isoen
dc.publisherIEEE
dc.relation.collaborationYurt içi
dc.relation.collaborationYurt dışı
dc.relation.journal2009 International Conference on Cyberworlds
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectFunction based geometry modelling
dc.subjectMinimal surfaces
dc.subjectSpherical product surface
dc.subjectRange
dc.subjectSuperquadris
dc.subjectModels
dc.subjectComputer science
dc.subjectEngineering
dc.subjectRobotics
dc.subjectSpheres
dc.subjectCyberworlds
dc.subjectFlat surfaces
dc.subjectGaussian curvatures
dc.subjectMinimal surfaces
dc.subjectPotential applications
dc.subjectProduct surface
dc.subjectStraight lines
dc.subjectTwo dimensional
dc.subject.scopusPlant Morphology; Botanists; Metaheuristics
dc.subject.wosComputer science, artificial intelligence
dc.subject.wosComputer science, information systems
dc.subject.wosComputer science, theory & methods
dc.subject.wosEngineering, electrical & electronic
dc.subject.wosRobotics
dc.titleOn spherical product surfaces in E3
dc.typeconferenceObject
dc.type.subtypeProceedings Paper
dspace.entity.typePublication
local.contributor.departmentFen Edebiyat Fakültesi/Matematik Ana Bilim Dalı
local.indexed.atScopus
local.indexed.atWOS

Dosyalar

Lisanslı seri

Şimdi gösteriliyor 1 - 1 / 1
Placeholder
Ad:
license.txt
Boyut:
1.71 KB
Format:
Item-specific license agreed upon to submission
Açıklama