Yayın:
Thermal hysteresis enhancement and dispersion thermal stability in paraffin actuators: Comparison of pan-nanofibers vs metal oxide nanoparticles use

dc.contributor.buuauthorKutlu, Ahmet
dc.contributor.buuauthorAykut, Yakup
dc.contributor.buuauthorAYKUT, YAKUP
dc.contributor.buuauthorEren, Recep
dc.contributor.buuauthorEREN, RECEP
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentTekstil Mühendisliği Ana Bilim Dalı.
dc.contributor.researcheridJTV-2018-2023
dc.date.accessioned2025-01-24T12:03:52Z
dc.date.available2025-01-24T12:03:52Z
dc.date.issued2024-10-28
dc.description.abstractIn this research, the possibility of thermal property enhancement of paraffin actuators with nanofiber and metal oxide nanoparticle addition was experimentally evaluated. Besides pure paraffin compound, paraffin mixed with the CuO, Fe3O4, ZnO, Al2O3, and electrospun polyacrylonitrile (PAN) nanofiber nanoparticles were used, and a significant hysteresis improvement at first-level measurement was observed as 24.6, 26.2, 20.0, 29.2, and 30.8 % sequentially for the samples respectively compared with pure paraffin. Thermal dispersion stability of the nanocomposites was comprehended via computer tomographic (CT) investigation. The excessive precipitation of CuO, Fe3O4, and ZnO particles in the paraffin nanocomposite was observed. Precipitation of PAN Nanofiber- and Al2O3-Paraffin nanocomposite was not visually detectable via CT throughputs. The effect of thermal dispersion stability on the hysteresis performance of the nanocomposites was also investigated to ensure long-term consistent hysteresis performance advantages in paraffin actuators. Thermal dispersion stability effect on hysteresis performance of paraffin actuators with CuO, Fe3O4, ZnO, Al2O3, and PAN nanofiber nanocomposite paraffin compounds showed losses as 14.3, 14.6, 5.8, 4.3 and 2.2 % sequentially for the samples respectively.
dc.identifier.doi10.1016/j.sna.2024.115965
dc.identifier.issn0924-4247
dc.identifier.scopus2-s2.0-85207302840
dc.identifier.urihttps://doi.org/10.1016/j.sna.2024.115965
dc.identifier.urihttps://hdl.handle.net/11452/49792
dc.identifier.volume379
dc.identifier.wos001347191600001
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherElsevier Science Sa
dc.relation.journalSensors And Actuators A-physical
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectPhase-change material
dc.subjectElectrospun polyacrylonitrile
dc.subjectCarbon nanofibers
dc.subjectCuo
dc.subjectWax
dc.subjectOptimization
dc.subjectAlkanes
dc.subjectPipe
dc.subjectZno
dc.subjectParaffin actuator
dc.subjectThermal hysteresis
dc.subjectPolyacrylonitrile
dc.subjectNanofibers
dc.subjectMetal oxide nanoparticles
dc.subjectScience & technology
dc.subjectTechnology
dc.subjectEngineering, electrical & electronic
dc.subjectEngineering
dc.subjectInstruments & instrumentation
dc.titleThermal hysteresis enhancement and dispersion thermal stability in paraffin actuators: Comparison of pan-nanofibers vs metal oxide nanoparticles use
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/Tekstil Mühendisliği Ana Bilim Dalı.
local.indexed.atWOS
local.indexed.atScopus
relation.isAuthorOfPublication9b6d7d6e-e8d2-4636-86ab-37eae699c9d3
relation.isAuthorOfPublication5984d8ac-9b86-4303-85d3-bc728d2e2d4e
relation.isAuthorOfPublication.latestForDiscovery9b6d7d6e-e8d2-4636-86ab-37eae699c9d3

Dosyalar