Yayın:
Third zagreb index of graphs with added edges

dc.contributor.authorMahalank, P.
dc.contributor.authorCangül, İ.N.
dc.contributor.buuauthorCANGÜL, İSMAİL NACİ
dc.contributor.departmentFen Edebiyat Fakültesi
dc.contributor.departmentMatematik Ana Bilim Dalı
dc.contributor.orcid0000-0002-0700-5774
dc.contributor.scopusid57189022403
dc.date.accessioned2025-08-06T22:42:52Z
dc.date.issued2022-01-01
dc.description.abstractEdge deletion and addition to a graph is an important combinatorial method in Graph Theory which enables one to calculate some properties of a graph by means of similar and usually simpler graphs. In this paper, as a sequel to recent papers on edge deletion and addition, we consider the change in the third Zagreb index of a simple graph G when an arbitrary edge is added. The effect of adding any kind of edge to a graph is shown to be an integer congruent to 2 modulo 6. This result can be used to calculate the third Zagreb index of larger graphs in terms of the Zagreb indices of smaller graphs. As some examples, some inequalities for the change of Zagreb indices of path, cycle, star, complete, complete bipartite and tadpole graphs are given.
dc.identifier.endpage 92
dc.identifier.issn2244-8659
dc.identifier.issue1
dc.identifier.scopus2-s2.0-85159820730
dc.identifier.startpage81
dc.identifier.urihttps://hdl.handle.net/11452/53389
dc.identifier.volume10
dc.indexed.scopusScopus
dc.language.isoen
dc.publisherCouncil for Exceptional Children
dc.relation.journalBulletin of Computational Applied Mathematics
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectVertex degree
dc.subjectTopological index
dc.subjectThird Zagreb index
dc.subjectPendant edge
dc.subjectGraph
dc.subjectEdge addition
dc.subject.scopusTopological Indices in Molecular Graph Theory
dc.titleThird zagreb index of graphs with added edges
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentFen Edebiyat Fakültesi/ Matematik Ana Bilim Dalı
local.indexed.atScopus
relation.isAuthorOfPublication601ef81f-9bdf-4a4a-9ac1-82a82260384d
relation.isAuthorOfPublication.latestForDiscovery601ef81f-9bdf-4a4a-9ac1-82a82260384d

Dosyalar