Publication:
A comparison of artificial neural networks and multiple linear regression models as in predictors of fabric weft defects

dc.contributor.buuauthorArıkan Kargı, V. Sinem
dc.contributor.departmentİktisadi ve İdari Bilimler Fakültesi
dc.contributor.departmentEkonometri Bölümü
dc.contributor.researcheridAAG-8295-2021
dc.contributor.scopusid56403234400
dc.date.accessioned2024-02-19T06:39:58Z
dc.date.available2024-02-19T06:39:58Z
dc.date.issued2014-07-23
dc.description.abstractPredicting uncertainty is quite important for the reliability of decisions to be made by business managers. Contemporary problems are complex, and their solutions require scientific decision-making. The aim of this study is to predict weft defects in fabric production for a textile business using a multilayer perceptron model and multiple linear regression models. Matlab R2010b software was used for multilayer perceptron model solutions, and SPSS 13 packet software was used for multiple linear regression model solutions. The results of the two models were compared, and the multilayer perceptron model was identified as the best predictive model. This study shows that in operational research both artificial neural networks and the multiple linear regression model can be successfully used to predict fabric weft errors.
dc.identifier.citationKargı, V. S. A. vd. (2014). "A comparison of artificial neural networks and multiple linear regression models as in predictors of fabric weft defects". Tekstil ve Konfeksiyon, 24(3), 309-316.
dc.identifier.endpage316
dc.identifier.issn1300-3356
dc.identifier.issue3
dc.identifier.scopus2-s2.0-84908507323
dc.identifier.startpage309
dc.identifier.urihttps://hdl.handle.net/11452/39837
dc.identifier.volume24
dc.identifier.wos000344418800011
dc.indexed.wosSCIE
dc.language.isoen
dc.publisherE.U. Printing and Publishing House
dc.relation.journalTekstil ve Konfeksiyon
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectArtificial neural network
dc.subjectPrediction
dc.subjectFabric weft defect
dc.subjectMultilayer perceptron model
dc.subjectMultiple linear regression model
dc.subjectMaterials science
dc.subject.scopusYarns; Cotton Fibers; Weft
dc.subject.wosMaterials science, textiles
dc.titleA comparison of artificial neural networks and multiple linear regression models as in predictors of fabric weft defects
dc.typeArticle
dc.wos.quartileQ4 (Materials Science, Textiles)
dspace.entity.typePublication
local.contributor.departmentİktisadi ve İdari Bilimler Fakültesi/Ekonometri Bölümü
local.indexed.atWOS
local.indexed.atScopus

Files

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: