Publication:
Optimal design of planetary gear train for automotive transmissions using advanced meta-heuristics

dc.contributor.authorAbderazek, Hammoudi
dc.contributor.authorSait, Sadiq M.
dc.contributor.buuauthorYıldız, Ali Rıza
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentMakine Mühendisliği Bölümü
dc.contributor.researcheridF-7426-2011
dc.date.accessioned2022-12-27T06:34:48Z
dc.date.available2022-12-27T06:34:48Z
dc.date.issued2019
dc.description.abstractIn this paper, nine recent meta-heuristics have been employed to search for optimal design of an automatic planetary gear train. The function of the designed system is to automatically transmit power and motion in automobiles. Nine mixed decision parameters are considered in the optimisation procedure. The geometric conditions such as the undercutting, the maximum overall diameter of the transmission, as well as the spacing of multiple planets are taken into account to ensure an optimum design. All the above algorithms are tested both quantitatively and qualitatively for solution quality, robustness, and their time complexity is determined. Results obtained illustrate that the utilised approaches can effectively solve the planetary gearbox problem. Besides this, the comparative study indicates that roulette wheel selection-elitist differential evolution (ReDE) outperforms the other algorithms in terms of the statistical results, and FA has the best convergence behaviour. Meanwhile, multi-verse optimisation (MVO) and butterfly optimisation algorithm (BOA) performed better than the other used algorithms when computation time was considered.
dc.description.sponsorshipKing Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia
dc.identifier.citationAbderazek, H. vd. (2019). ''Optimal design of planetary gear train for automotive transmissions using advanced meta-heuristics''. International Journal of Vehicle Design, 80(2-4), 121-136.
dc.identifier.endpage136
dc.identifier.issn0143-3369
dc.identifier.issn1741-5314
dc.identifier.issue2-4
dc.identifier.scopus2-s2.0-85092307032
dc.identifier.startpage121
dc.identifier.urihttps://www.inderscienceonline.com/doi/abs/10.1504/IJVD.2019.109862
dc.identifier.urihttps://doi.org/10.1504/IJVD.2019.109862
dc.identifier.urihttp://hdl.handle.net/11452/30106
dc.identifier.volume80
dc.identifier.wos000576400300003
dc.indexed.wosSCIE
dc.language.isoen
dc.publisherInderscience Enterprises
dc.relation.bapBAP
dc.relation.collaborationYurt dışı
dc.relation.journalInternational Journal of Vehicle Design
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectPlanetary gearbox
dc.subjectAutomotive transmissions
dc.subjectDiscrete optimisation
dc.subjectOptimal design
dc.subjectMeta-heuristics
dc.subjectEngineering optimisation
dc.subjectDifferential evolution
dc.subjectMulti verse optimiser
dc.subjectNeural network
dc.subjectFlame optimization algorithm
dc.subjectStructural design
dc.subjectGravitational search
dc.subjectGrey wolf
dc.subjectAnt lion
dc.subjectEvolutionary
dc.subjectEngineering
dc.subjectTransportation
dc.subjectEpicyclic gears
dc.subjectEvolutionary algorithms
dc.subjectOptimal systems
dc.subjectPowertrains
dc.subjectTransmissions
dc.subjectWell spacing
dc.subjectAutomotive transmissions
dc.subjectComparative studies
dc.subjectDecision parameters
dc.subjectDifferential Evolution
dc.subjectGeometric conditions
dc.subjectOptimisation procedures
dc.subjectPlanetary gear train
dc.subjectRoulette wheel selection
dc.subjectOptimization
dc.subject.scopusCutting Process; Chatter; Turning
dc.subject.wosEngineering, mechanical
dc.subject.wosTransportation science & technology
dc.titleOptimal design of planetary gear train for automotive transmissions using advanced meta-heuristics
dc.typeArticle
dc.wos.quartileQ3
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/Makine Mühendisliği Bölümü
local.indexed.atScopus
local.indexed.atWOS

Files

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: