Yayın:
Advanced structural design of engineering components utilizing an artificial neural network and gndo algorithm

dc.contributor.buuauthorYILDIZ, ALİ RIZA
dc.contributor.buuauthorYILDIZ, BETÜL SULTAN
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentMakina Mühendisliği Ana Bilim Dalı.
dc.contributor.researcheridAAH-6495-2019
dc.date.accessioned2025-01-24T13:22:08Z
dc.date.available2025-01-24T13:22:08Z
dc.date.issued2024-11-27
dc.description.abstractIn today's competitive environment, the lightweighting of vehicle components is under intense study. While some of these studies focus on material modification, a very important part of these studies focuses on lightweighting the same material. The most widely used techniques in light-weight studies are topology, topography, size, shape optimization, and metaheuristic algorithms. This work introduces a novel hybrid generalized normal distribution optimization (GNDO) simulated annealing algorithm (GNDO-SA) adapted to optimize a vehicle component made of aluminum material. The focus is on shape optimization, which aims to minimize the weight of the vehicle component while ensuring that stress constraints are met. A combination of latin hypercube sampling (LHS) and artificial neural network is used to generate the mathematical equations governing mathematical equations for the objective/constraint used in the optimization. These findings highlight the effectiveness and superiority of the GNDO-SA method for optimization problems.
dc.identifier.doi10.1515/mt-2024-0216
dc.identifier.issn0025-5300
dc.identifier.scopus2-s2.0-85213039517
dc.identifier.urihttps://doi.org/10.1515/mt-2024-0216
dc.identifier.urihttps://hdl.handle.net/11452/49810
dc.identifier.wos001362942200001
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherWalter De Gruyter Gmbh
dc.relation.bapFGA-2023-1316
dc.relation.journalMaterials Testing
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectArithmetic optimization algorithm
dc.subjectOptimal machining parameters
dc.subjectSalp swarm algorithm
dc.subjectOptimum design
dc.subjectDifferential evolution
dc.subjectGravitational search
dc.subjectVehicle
dc.subjectCrashworthiness
dc.subjectVehicle component
dc.subjectAluminum
dc.subjectGndo algorithm
dc.subjectFinite element
dc.subjectSimulated annealing
dc.subjectScience & technology
dc.subjectTechnology
dc.subjectMaterials science, characterization & testing
dc.subjectMaterials science
dc.titleAdvanced structural design of engineering components utilizing an artificial neural network and gndo algorithm
dc.typeArticle
dc.type.subtypeEarly Access
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/Makina Mühendisliği Ana Bilim Dalı.
local.indexed.atWOS
local.indexed.atScopus
relation.isAuthorOfPublication89fd2b17-cb52-4f92-938d-a741587a848d
relation.isAuthorOfPublicatione544f464-5e4a-4fb5-a77a-957577c981c6
relation.isAuthorOfPublication.latestForDiscovery89fd2b17-cb52-4f92-938d-a741587a848d

Dosyalar