Yayın: Advanced structural design of engineering components utilizing an artificial neural network and gndo algorithm
| dc.contributor.buuauthor | YILDIZ, ALİ RIZA | |
| dc.contributor.buuauthor | YILDIZ, BETÜL SULTAN | |
| dc.contributor.department | Mühendislik Fakültesi | |
| dc.contributor.department | Makina Mühendisliği Ana Bilim Dalı. | |
| dc.contributor.researcherid | AAH-6495-2019 | |
| dc.date.accessioned | 2025-01-24T13:22:08Z | |
| dc.date.available | 2025-01-24T13:22:08Z | |
| dc.date.issued | 2024-11-27 | |
| dc.description.abstract | In today's competitive environment, the lightweighting of vehicle components is under intense study. While some of these studies focus on material modification, a very important part of these studies focuses on lightweighting the same material. The most widely used techniques in light-weight studies are topology, topography, size, shape optimization, and metaheuristic algorithms. This work introduces a novel hybrid generalized normal distribution optimization (GNDO) simulated annealing algorithm (GNDO-SA) adapted to optimize a vehicle component made of aluminum material. The focus is on shape optimization, which aims to minimize the weight of the vehicle component while ensuring that stress constraints are met. A combination of latin hypercube sampling (LHS) and artificial neural network is used to generate the mathematical equations governing mathematical equations for the objective/constraint used in the optimization. These findings highlight the effectiveness and superiority of the GNDO-SA method for optimization problems. | |
| dc.identifier.doi | 10.1515/mt-2024-0216 | |
| dc.identifier.issn | 0025-5300 | |
| dc.identifier.scopus | 2-s2.0-85213039517 | |
| dc.identifier.uri | https://doi.org/10.1515/mt-2024-0216 | |
| dc.identifier.uri | https://hdl.handle.net/11452/49810 | |
| dc.identifier.wos | 001362942200001 | |
| dc.indexed.wos | WOS.SCI | |
| dc.language.iso | en | |
| dc.publisher | Walter De Gruyter Gmbh | |
| dc.relation.bap | FGA-2023-1316 | |
| dc.relation.journal | Materials Testing | |
| dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi | |
| dc.rights | info:eu-repo/semantics/closedAccess | |
| dc.subject | Arithmetic optimization algorithm | |
| dc.subject | Optimal machining parameters | |
| dc.subject | Salp swarm algorithm | |
| dc.subject | Optimum design | |
| dc.subject | Differential evolution | |
| dc.subject | Gravitational search | |
| dc.subject | Vehicle | |
| dc.subject | Crashworthiness | |
| dc.subject | Vehicle component | |
| dc.subject | Aluminum | |
| dc.subject | Gndo algorithm | |
| dc.subject | Finite element | |
| dc.subject | Simulated annealing | |
| dc.subject | Science & technology | |
| dc.subject | Technology | |
| dc.subject | Materials science, characterization & testing | |
| dc.subject | Materials science | |
| dc.title | Advanced structural design of engineering components utilizing an artificial neural network and gndo algorithm | |
| dc.type | Article | |
| dc.type.subtype | Early Access | |
| dspace.entity.type | Publication | |
| local.contributor.department | Mühendislik Fakültesi/Makina Mühendisliği Ana Bilim Dalı. | |
| local.indexed.at | WOS | |
| local.indexed.at | Scopus | |
| relation.isAuthorOfPublication | 89fd2b17-cb52-4f92-938d-a741587a848d | |
| relation.isAuthorOfPublication | e544f464-5e4a-4fb5-a77a-957577c981c6 | |
| relation.isAuthorOfPublication.latestForDiscovery | 89fd2b17-cb52-4f92-938d-a741587a848d |
