Publication:
Multi-surrogate-assisted metaheuristics for crashworthiness optimisation

dc.contributor.authorAye, Cho Mar
dc.contributor.authorPholdee, Nantiwat
dc.contributor.authorBureerat, Sujin
dc.contributor.authorSait, Sadiq M.
dc.contributor.buuauthorYıldız, Ali Rıza
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentMakine Mühendisliği Bölümü
dc.contributor.researcheridF-7426-2011
dc.contributor.scopusid7102365439
dc.date.accessioned2022-12-13T07:19:31Z
dc.date.available2022-12-13T07:19:31Z
dc.date.issued2019
dc.description.abstractThis work proposes a multi-surrogate-assisted optimisation and performance investigation of several newly developed metaheuristics (MHs) for the optimisation of vehicle crashworthiness. The optimisation problem for car crashworthiness is posed to find the shape and size of a crash box while the objective function is to maximise the total energy absorption subject to a mass constraint. Two main numerical experiments are conducted. Firstly, the performance of different surrogate models along with the proposed multi-surrogate model is investigated. Secondly, several MHs are applied to tackle the proposed crashworthiness optimisation problem by employing the best obtained surrogate model. The results reveal that the proposed multi-surrogate model is the best performer. Among the several MHs used in this study, sine cosine algorithm is the best algorithm for the proposed multi-surrogate model. Based on this study, the application of the proposed multi-surrogate model is better than using one particular traditional surrogate model, especially for constrained optimisation.
dc.description.sponsorshipThailand Research Fund (TRF)
dc.identifier.citationAye, C. M. vd. (2019). ''Multi-surrogate-assisted metaheuristics for crashworthiness optimisation''. International Journal of Vehicle Desing, 80(2-4), 223-240.
dc.identifier.endpage240
dc.identifier.issn0143-3369
dc.identifier.issn1741-5314
dc.identifier.issue2-4
dc.identifier.scopus2-s2.0-85092266557
dc.identifier.startpage223
dc.identifier.urihttps://doi.org/10.1504/IJVD.2019.109866
dc.identifier.urihttps://www.inderscienceonline.com/doi/10.1504/IJVD.2019.109866
dc.identifier.urihttp://hdl.handle.net/11452/29841
dc.identifier.volume80
dc.identifier.wos000576400300008
dc.indexed.wosSCIE
dc.language.isoen
dc.publisherInderscience
dc.relation.collaborationYurt dışı
dc.relation.collaborationSanayi
dc.relation.journalInternational Journal of Vehicle Design
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectSurrogate-assisted optimisation
dc.subjectCrash box design
dc.subjectEvolutionary algorithm
dc.subjectConstrained optimisation
dc.subjectMeta-heuristics
dc.subjectCrashworthiness optimisation
dc.subjectKriging model
dc.subjectThin-wall structures
dc.subjectWater cycle
dc.subjectGrey wolf
dc.subjectAnt lion
dc.subjectDesing
dc.subjectAlgorithm
dc.subjectUncertainty
dc.subjectPerformance
dc.subjectAluminum
dc.subjectSearch
dc.subjectAccidents
dc.subjectHeuristic algorithms
dc.subjectConstrained optimization
dc.subjectMass constraints
dc.subjectMeta heuristics
dc.subjectNumerical experiments
dc.subjectObjective functions
dc.subjectOptimisation problems
dc.subjectShape and size
dc.subjectSine-cosine algorithm
dc.subjectSurrogate model
dc.subjectCrashworthiness
dc.subjectEngineering
dc.subjectTransportation
dc.subject.scopusCrashworthiness; Energy Absorption; Tube
dc.subject.wosEngineering, mechanical
dc.subject.wosTransportation science & technology
dc.titleMulti-surrogate-assisted metaheuristics for crashworthiness optimisation
dc.typeArticle
dc.wos.quartileQ3
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/Makine Mühendisliği Bölümü
local.indexed.atScopus
local.indexed.atWOS

Files

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: