Publication:
Ant Colony Optimization based clustering methodology

dc.contributor.authorKayalıgil, Sinan
dc.contributor.authorÖzdemirel, Nur Evin
dc.contributor.buuauthorİnkaya, Tülin
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentEndüstri Mühendisliği Bölümü
dc.contributor.orcid0000-0002-6260-0162
dc.contributor.researcheridAAH-2155-2021
dc.contributor.scopusid24490728300
dc.date.accessioned2022-06-09T12:45:01Z
dc.date.available2022-06-09T12:45:01Z
dc.date.issued2015-03
dc.description.abstractIn this work we consider spatial clustering problem with no a priori information. The number of clusters is unknown, and clusters may have arbitrary shapes and density differences. The proposed clustering methodology addresses several challenges of the clustering problem including solution evaluation, neighborhood construction, and data set reduction. In this context, we first introduce two objective functions, namely adjusted compactness and relative separation. Each objective function evaluates the clustering solution with respect to the local characteristics of the neighborhoods. This allows us to measure the quality of a wide range of clustering solutions without a priori information. Next, using the two objective functions we present a novel clustering methodology based on Ant Colony Optimization (ACO-C). ACO-C works in a multi-objective setting and yields a set of non-dominated solutions. ACO-C has two pre-processing steps: neighborhood construction and data set reduction. The former extracts the local characteristics of data points, whereas the latter is used for scalability. We compare the proposed methodology with other clustering approaches. The experimental results indicate that ACO-C outperforms the competing approaches. The multi-objective evaluation mechanism relative to the neighborhoods enhances the extraction of the arbitrary-shaped clusters having density variations.
dc.identifier.citationİnkaya, T. vd. (2015). "Ant Colony Optimization based clustering methodology". Applied Soft Computing, 28, 301-311.
dc.identifier.endpage311
dc.identifier.issn1568-4946
dc.identifier.scopus2-s2.0-84919930171
dc.identifier.startpage301
dc.identifier.urihttps://doi.org/10.1016/j.asoc.2014.11.060
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S1568494614006334
dc.identifier.urihttp://hdl.handle.net/11452/27005
dc.identifier.volume28
dc.identifier.wos000348452500030
dc.indexed.wosSCIE
dc.language.isoen
dc.publisherElsevier
dc.relation.collaborationYurt içi
dc.relation.journalApplied Soft Computing
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectAnt Colony Optimization
dc.subjectClustering
dc.subjectData set reduction
dc.subjectMultiple objectives
dc.subjectAutomatic evolution
dc.subjectK-means
dc.subjectAlgorithm
dc.subjectHybridization
dc.subjectDensity
dc.subjectComputer science
dc.subjectCluster analysis
dc.subjectFunction evaluation
dc.subjectReduction
dc.subjectClustering
dc.subjectClustering solutions
dc.subjectData set
dc.subjectLocal characteristics
dc.subjectMulti-objective evaluations
dc.subjectMultiple-objectives
dc.subjectNeighborhood construction
dc.subjectNondominated solutions
dc.subjectAnt colony optimization
dc.subject.scopusData Clustering; K-Mean Algorithm; Cluster Analysis
dc.subject.wosComputer science, artificial intelligence
dc.subject.wosComputer science, interdisciplinary applications
dc.titleAnt Colony Optimization based clustering methodology
dc.typeArticle
dc.wos.quartileQ1
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/Endüstri Mühendisliği Bölümü
local.indexed.atScopus
local.indexed.atWOS

Files

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: