Publication:
Biohydrogen production via integrated sequential fermentation using magnetite nanoparticles treated crude enzyme to hydrolyze sugarcane bagasse

dc.contributor.authorSrivastava, Neha
dc.contributor.authorAlhazmi, Alaa
dc.contributor.authorMohammad, Akbar
dc.contributor.authorHaque, Shafiul
dc.contributor.authorSrivastava, Manish
dc.contributor.authorPal, Dan Bahadur
dc.contributor.authorSingh, Rajeev
dc.contributor.authorMishra, P. K.
dc.contributor.authorVo, Dai Viet N.
dc.contributor.authorYoon, Taeho
dc.contributor.authorGupta, Vijai Kumar
dc.contributor.buuauthorHaque, Shafiul
dc.contributor.departmentTıp Fakültesi
dc.contributor.orcid0000-0002-2989-121X
dc.contributor.researcheridAAN-2946-2020
dc.date.accessioned2024-11-29T11:22:23Z
dc.date.available2024-11-29T11:22:23Z
dc.date.issued2022-08-22
dc.description.abstractThis study presents a potential approach to enhance integrated sequential biohydrogen production from waste biomass using magnetite nanoparticle (Fe3O4 NPs) which is & nbsp;synthesized through waste seeds of Syzygium cumini. Consequences of 0.5% Fe3O4 NPs have been investigated on the thermal and pH stability of fungal crude cellulase. It is noticed that Fe3O4 NPs treated enzyme and control exhibits 100% activity in the temperature range of 45-60 degrees C and 45-55 degrees C, respectively. Moreover, Fe3O4 NPs treated enzyme showed extended thermal stability in the temperature range of 50-60 degrees C up to 12 h. Beside this, Fe3O4 NPs treated enzyme possesses 100% stability in the pH range of 5.0-7.0 whereas control exhibited only at pH 6.0. Enzymatic hydrolysis via Fe3O4 NPs treated enzyme has been employed which produces-68.0 g/L reducing sugars from sugarcane bagasse. Sub-sequently, sugar hydrolyzate has been utilized as substrate in the sequential integrated fermentation that produces-3427.0 mL/L cumulative hydrogen after 408 h. This approach may have potential for the pilot scale production of biohydrogen from waste biomass at low-cost in an eco-friendly manner. (c) 2021 Published by Elsevier Ltd on behalf of Hydrogen Energy Publications LLC.
dc.description.sponsorshipDepartment of Chemical Engineering and Technology
dc.description.sponsorshipScience and Engineering ResearchBoard for SERB Research Scientist award SB/SRS/2018-19/48/PS
dc.description.sponsorshipDST for DST INSPIRE Faculty award IFA-13-MS-02
dc.identifier.doi10.1016/j.ijhydene.2021.08.198
dc.identifier.eissn1879-3487
dc.identifier.endpage30871
dc.identifier.issn0360-3199
dc.identifier.issue72
dc.identifier.scopus2-s2.0-85115126146
dc.identifier.startpage30861
dc.identifier.urihttps://doi.org/10.1016/j.ijhydene.2021.08.198
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S0360319921034455
dc.identifier.urihttps://hdl.handle.net/11452/48712
dc.identifier.volume47
dc.identifier.wos000859974800009
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherElsevier
dc.relation.journalInternational Journal of Hydrogen Energy
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectHydrogen-production
dc.subjectDark fermentation
dc.subjectReducing sugars
dc.subjectRice straw
dc.subjectPhoto
dc.subjectWaste
dc.subjectImmobilization
dc.subjectCellulase
dc.subjectWater
dc.subjectPhotofermentation
dc.subjectIron oxide nanoparticles
dc.subjectGreen synthesis
dc.subjectReducing sugars
dc.subjectDark-fermentation
dc.subjectPhoto-fermentation
dc.subjectBiohydrogen
dc.subjectScience & technology
dc.subjectPhysical sciences
dc.subjectTechnology
dc.subjectChemistry, physical
dc.subjectElectrochemistry
dc.subjectEnergy & fuels
dc.subjectChemistry
dc.subjectElectrochemistry
dc.titleBiohydrogen production via integrated sequential fermentation using magnetite nanoparticles treated crude enzyme to hydrolyze sugarcane bagasse
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentTıp Fakültesi
local.indexed.atWOS
local.indexed.atScopus

Files