Publication:
Hibrit araçlarda sinirsel ağlar ve genetik algoritma ile süspansiyon sistemi tasarımı ve optimizasyonu

dc.contributor.advisorÖztürk, Ferruh
dc.contributor.authorAğakişi, Gurur
dc.contributor.departmentFen Bilimleri Enstitüsü
dc.contributor.departmentOtomotiv Mühendisliği Ana Bilim Dalı
dc.contributor.orcid0000-0002-2858-7654
dc.date.accessioned2023-04-28T07:15:45Z
dc.date.available2023-04-28T07:15:45Z
dc.date.issued2023-04-10
dc.description.abstractŞasi ve araç dinamiği geliştirme süreci, araç performans hedeflerine göre süspansiyon tipi seçimi ile başlar. Süspansiyon geometri noktalarının konumu ve burçların sertlikleri gibi değişkenleri optimum olarak bularak araç dinamiği hedeflerine ulaşmak için hem fiziksel hem de sanal K&C (Elastokinematik) analizler gerçekleştirilir. Ancak, tüm amaçları karşılayan uygun tasarım değişkenlerini bulmak zordur. Bu tez kapsamında, fiziksel olarak sanal model ile korelasyona sahip geometri noktaları ve bileşen özelliklerine sahip referans kompakt bir araç üzerinde gerçekleştirilen deney tasarımı (DOE) ve sinir ağlarının (NN) yardımıyla süspansiyon K&C karakteristik hedeflerine sistematik olarak ulaşmak için bir süspansiyon optimizasyon yaklaşımı oluşturulmuştur. MBD (Çoklu Cisim Dinamiği) model korelasyonu, Ackerman hatası ve kamber açı değişimi ile ilgili olarak aracın direksiyon kinematiğini geliştirmek ve bu doğrultuda geometri noktalarını optimize etmek için sağlanmıştır. Sonuçlar, geometri noktalarını tahmin etmeye yönelik NN tabanlı optimizasyon stratejisinin, direksiyon kinematiğinde Ackerman hatasını ve kamber açısı değişimini geleneksel cevap yüzeyi yöntemi (RSM) çalışmalarına kıyasla önemli ölçüde iyileştirdiğini göstermiştir.
dc.description.abstractThe chassis and vehicle dynamics development process starts with suspension type selection according to vehicle performance objectives. Both physical and virtual K&C (Kinematics and Compliance) analyses are performed to achieve the vehicle dynamics targets by finding the optimum variables such as the position of hardpoints and stiffnesses of bushings. However, finding appropriate design variables that meet all the aims is challenging. This thesis establishes a suspension optimization approach to systematically attain suspension K&C characteristic objectives with the design of experiments (DOE) and neural networks (NN) based on the reference compact-sized vehicle with accurate hardpoints and component specifications. The MBD model correlation is specifically provided to optimize the hardpoints to improve the vehicle's steering kinematics concerning Ackerman error and camber angle variation. The results showed that NN based optimization strategy to predict the hard points has significantly improved Ackerman error and camber angle variation on steering kinematics compared to conventional response surface methods.
dc.description.sponsorshipTOFAŞ Türk Otomobil Fabrikası AŞ - ADAMS
dc.description.sponsorshipYüksek Öğretim Kurumu - 100/2000
dc.format.extentX, 142 sayfa
dc.identifier.citationAğakişi, G. (2022). Hibrit araçlarda sinirsel ağlar ve genetik algoritma ile süspansiyon sistemi tasarımı ve optimizasyonu. Yayınlanmamış doktora tezi. Bursa Uludağ Üniversitesi Fen Bilimleri Enstitüsü.
dc.identifier.urihttp://hdl.handle.net/11452/32448
dc.language.isotr
dc.publisherBursa Uludağ Üniversitesi
dc.relation.publicationcategoryTez
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectMcPherson süspansiyon
dc.subjectElastokinematik
dc.subjectDeney tasarımı
dc.subjectYapay sinir ağları
dc.subjectGeometri optimizasyonu
dc.subjectMcPherson suspension
dc.subjectKinematics & compliance
dc.subjectDesign of experiments
dc.subjectNeural networks
dc.subjectHardpoint optimization
dc.titleHibrit araçlarda sinirsel ağlar ve genetik algoritma ile süspansiyon sistemi tasarımı ve optimizasyonu
dc.title.alternativeSuspension system design and optimization with neural networks and genetic algorithm in hybrid electric vehicles
dc.typedoctoralThesis
dspace.entity.typePublication
local.contributor.departmentFen Bilimleri Enstitüsü/Otomotiv Mühendisliği Ana Bilim Dalı

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
Gurur_Ağakişi.pdf
Size:
5.49 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: