Yayın:
A Comparison of Deep Transfer Learning Methods on Bearing Fault Detection

dc.contributor.authorDeveci, B.U.
dc.contributor.authorCeltikoglu, M.
dc.contributor.authorAlp, T.
dc.contributor.authorAlbayrak, O.
dc.contributor.authorUnal, P.
dc.contributor.authorKirci, P.
dc.contributor.buuauthorKIRCI, PINAR
dc.contributor.buuauthorÇeltikoğlu, Mert
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentBilgisayar Mühendisliği Ana Bilim Dalı
dc.contributor.scopusid57205335558
dc.contributor.scopusid15026635000
dc.date.accessioned2025-05-13T06:49:41Z
dc.date.issued2021-08-01
dc.description.abstractIn rotating machinery, bearings are widely used as universal components. Bearings are placed in critical positions, therefore, in predictive maintenance, it is crucial to diagnose bearing faults accurately and in a timely manner. In this paper, three diverse pre-trained networks on bearing fault diagnosis are discussed. A generic intelligent bearing fault diagnosis system based on AlexNet, GoogLeNet and ResNet-50 with transfer learning is proposed to distinguish and classify different bearing faults. Three bearing faults at all various loads and speeds selected from the Case Western Reserve University (CWRU) bearing dataset were converted to time-frequency images, in order to improve the performance of the proposed networks. Results showed that when compared to previous methods, the proposed method achieved outstanding execution, with overall classification training accuracy of 100%, validation accuracy of 99.27%.
dc.description.sponsorshipEuropean Union ᤀs Horizon 2020 research and innovation programme
dc.description.sponsorshipHorizon 2020 Framework Programme -- 870130 -- H2020
dc.identifier.doi10.1109/FiCloud49777.2021.00048
dc.identifier.endpage 292
dc.identifier.isbn[9781665425742]
dc.identifier.scopus2-s2.0-85119661402
dc.identifier.startpage285
dc.identifier.urihttps://hdl.handle.net/11452/51839
dc.indexed.scopusScopus
dc.language.isoen
dc.publisherInstitute of Electrical and Electronics Engineers Inc.
dc.relation.journalProceedings - 2021 International Conference on Future Internet of Things and Cloud, FiCloud 2021
dc.relation.tubitakTUBITAK
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectTransfer learning
dc.subjectResNet-50
dc.subjectGoogLeNet
dc.subjectDeep learning
dc.subjectCWRU bearing dataset
dc.subjectCNN
dc.subjectBearing fault diagnostics
dc.subjectAlexNet
dc.subject.scopusFailure Analysis; Fault Diagnosis; Transfer Learning
dc.titleA Comparison of Deep Transfer Learning Methods on Bearing Fault Detection
dc.typeconferenceObject
dc.type.subtypeConference Paper
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/ Bilgisayar Mühendisliği Ana Bilim Dalı
local.indexed.atScopus
relation.isAuthorOfPublication0270c3e7-f379-4f0e-84dd-a83c2bbf0235
relation.isAuthorOfPublication.latestForDiscovery0270c3e7-f379-4f0e-84dd-a83c2bbf0235

Dosyalar