Yayın:
Investigating the performance of automatic new topic identification across multiple datasets 1

dc.contributor.authorÖzmutlu H.C.
dc.contributor.authorCavdur F.
dc.contributor.authorSpink A.
dc.contributor.authorÖzmutlu S.
dc.contributor.buuauthorÖZMUTLU, HÜSEYİN CENK
dc.contributor.buuauthorÇAVDUR, FATİH
dc.contributor.buuauthorÖZMUTLU, SEDA
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentEndüstri Mühendisliği Ana Bilim Dalı
dc.contributor.orcid0000-0001-8054-5606
dc.contributor.scopusid6603061328
dc.contributor.scopusid8419687000
dc.contributor.scopusid6603660605
dc.date.accessioned2025-08-06T23:52:35Z
dc.date.issued2006-12-01
dc.description.abstractRecent studies on automatic new topic identification in Web search engine user sessions demonstrated that neural networks are successful in automatic new topic identification. However most of this work applied their new topic identification algorithms on data logs from a single search engine. In this study, we investigate whether the application of neural networks for automatic new topic identification are more successful on some search engines than others. Sample data logs from the Norwegian search engine FAST (currently owned by Overture) and Excite are used in this study. Findings of this study suggest that query logs with more topic shifts tend to provide more successful results on shift-based performance measures, whereas logs with more topic continuations tend to provide better results on continuation-based performance measures.
dc.identifier.issn1550-8390
dc.identifier.scopus2-s2.0-33847673526
dc.identifier.urihttps://hdl.handle.net/11452/54157
dc.identifier.volume43
dc.indexed.scopusScopus
dc.language.isoen
dc.relation.journalProceedings of the Asist Annual Meeting
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.titleInvestigating the performance of automatic new topic identification across multiple datasets 1
dc.typeconferenceObject
dc.type.subtypeConference Paper
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/Endüstri Mühendisliği Ana Bilim Dalı
local.indexed.atScopus
relation.isAuthorOfPublicationf621a75f-52a0-4022-a709-d298db143016
relation.isAuthorOfPublication488d40a8-9d9d-4814-89f3-0a6433d547cc
relation.isAuthorOfPublicationf49bf060-b2a9-469a-b736-2b4a29401a24
relation.isAuthorOfPublication.latestForDiscoveryf621a75f-52a0-4022-a709-d298db143016

Dosyalar