Publication:
A hybrid lstm approach for irrigation scheduling in maize crop

dc.contributor.authorDolaptsis, Konstantinos
dc.contributor.authorPantazi, Xanthoula Eirini
dc.contributor.authorParaskevas, Charalampos
dc.contributor.authorBantchina, Bere Benjamin
dc.contributor.authorQaswar, Muhammad
dc.contributor.authorBustan, Danyal
dc.contributor.authorMouazen, Abdul Mounem
dc.contributor.buuauthorARSLAN, SELÇUK
dc.contributor.buuauthorTekin, Yucel
dc.contributor.buuauthorTEKİN, YÜCEL
dc.contributor.buuauthorULUSOY, YAHYA
dc.contributor.buuauthorGündogdu, Kemal Sulhi
dc.contributor.buuauthorGÜNDOĞDU, KEMAL SULHİ
dc.contributor.orcid0000-0002-5591-4788
dc.contributor.researcheridABI-4047-2020
dc.contributor.researcheridR-8043-2016
dc.date.accessioned2025-02-14T11:15:18Z
dc.date.available2025-02-14T11:15:18Z
dc.date.issued2024-02-01
dc.description.abstractIrrigation plays a crucial role in maize cultivation, as watering is essential for optimizing crop yield and quality, particularly given maize's sensitivity to soil moisture variations. In the current study, a hybrid Long Short-Term Memory (LSTM) approach is presented aiming to predict irrigation scheduling in maize fields in Bursa, Turkey. A critical aspect of the study was the use of the Aquacrop 7.0 model to simulate soil moisture content (MC) data due to data limitations in the investigated fields. This simulation model, developed by the Food and Agriculture Organization (FAO), helped overcome gaps in soil sensor data, enhancing the LSTM model's predictions. The LSTM model was trained and tuned using a combination of soil, weather, and satellite-based plant vegetation data in order to predict soil moisture content (MC) reductions. The study's results indicated that the LSTM model, supported by Aquacrop 7.0 simulations, was effective in predicting MC reduction across various time phases of the maize growing season, attaining R2 values ranging from 0.8163 to 0.9181 for Field 1 and from 0.7602 to 0.8417 for Field 2, demonstrating the potential of this approach for precise and efficient agricultural irrigation practices.
dc.description.sponsorshipEuropean Union (EU)
dc.identifier.doi10.3390/agriculture14020210
dc.identifier.issue2
dc.identifier.scopus2-s2.0-85187312587
dc.identifier.urihttps://doi.org/10.3390/agriculture14020210
dc.identifier.urihttps://hdl.handle.net/11452/50431
dc.identifier.volume14
dc.identifier.wos001172045100001
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherMdpi
dc.relation.journalAgriculture-basel
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectSoil-water content
dc.subjectModel
dc.subjectPrecision agriculture
dc.subjectArtificial intelligence
dc.subjectLong short-term memory
dc.subjectPredictive control
dc.subjectDeep learning
dc.subjectMoisture content
dc.subjectWater management
dc.subjectTime series analysis
dc.subjectScience & technology
dc.subjectLife sciences & biomedicine
dc.subjectAgronomy
dc.subjectAgriculture
dc.titleA hybrid lstm approach for irrigation scheduling in maize crop
dc.typeArticle
dspace.entity.typePublication
local.indexed.atWOS
local.indexed.atScopus
relation.isAuthorOfPublication9b4502dc-6cb5-4d3a-9630-5d68f82ba23e
relation.isAuthorOfPublication2e651285-91d3-4408-ab1a-c0292101c026
relation.isAuthorOfPublication1c7a2371-0a45-4eca-ba65-589d03a62d53
relation.isAuthorOfPublication09d5e02c-facd-49b4-ba46-64ae7fb0c90c
relation.isAuthorOfPublication.latestForDiscovery9b4502dc-6cb5-4d3a-9630-5d68f82ba23e

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
Aslan_vd_2024.pdf
Size:
4.34 MB
Format:
Adobe Portable Document Format