Publication:
Ann-based evaluation system for erosion resistant highway shoulder rocks

dc.contributor.authorTariq, Aiman
dc.contributor.authorAbualshar, Basil
dc.contributor.authorDeliktaş, Babur
dc.contributor.authorSong, Chung R.
dc.contributor.authorAl-Nimri, Bashar
dc.contributor.authorBarret, Bruce
dc.contributor.authorSilvey, Alex
dc.contributor.authorGlennie, Nikolas
dc.contributor.buuauthorTariq, Aiman
dc.contributor.buuauthorDELİKTAŞ, BABÜR
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentİnşaat Mühendisliği Bölümü
dc.contributor.orcid0000-0003-0369-9091
dc.contributor.researcheridLCS-1995-2024
dc.contributor.researcheridAAH-8687-2021
dc.date.accessioned2025-01-27T08:08:59Z
dc.date.available2025-01-27T08:08:59Z
dc.date.issued2024-07-23
dc.description.abstractHighway shoulder rocks are exposed to continuous erosion force due to extreme rainfall that could be caused by global warming to some extent. However, the logical design method for erosion-resistant highway shoulder is not well-researched yet. This study utilized a large-scale UNLETB (University of Nebraska Lincoln-Erosion Testing Bed) with a 7.6 cm nozzle width and a 4000 cm3/sec flow rate to study the erosion characteristics of highway shoulder rocks. Test results showed that different shoulder materials currently used had vastly diverse erosion resistance. However, the clear criteria between the erosion-resistant gradation and other gradation could not be determined easily. Then, this study trained ANN (Artificial Neural Network) with test results to conveniently distinguish the erosion resistance of rocks from other rocks. The ANN predicted the acceptable/non-acceptable erosion characteristics of shoulder rocks with close to 99% accuracy based on the three gradation parameters (D10, D30, and D60).
dc.description.sponsorshipNebraska Department of Transportation
dc.identifier.doi10.1186/s40703-024-00216-2
dc.identifier.issn2092-9196
dc.identifier.issue1
dc.identifier.scopus2-s2.0-85199459241
dc.identifier.urihttps://doi.org/10.1186/s40703-024-00216-2
dc.identifier.urihttps://link.springer.com/article/10.1186/s40703-024-00216-2
dc.identifier.urihttps://hdl.handle.net/11452/49832
dc.identifier.volume15
dc.identifier.wos001274878300001
dc.indexed.wosWOS.ESCI
dc.language.isoen
dc.publisherSpringer Singapore Pte Ltd
dc.relation.journalInternational Journal of Geo-Engineering
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectArtificial neural-networks
dc.subjectMeasure soil erodibility
dc.subjectScour
dc.subjectPrediction
dc.subjectArtificial neural network (ann)
dc.subjectHighway shoulder rocks
dc.subjectErosion resistance
dc.subjectGlobal warming
dc.subjectEngineering
dc.titleAnn-based evaluation system for erosion resistant highway shoulder rocks
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/İnşaat Mühendisliği Bölümü
local.indexed.atWOS
local.indexed.atScopus
relation.isAuthorOfPublication61c4d3a5-cfbe-45da-969f-1a074b57717e
relation.isAuthorOfPublication.latestForDiscovery61c4d3a5-cfbe-45da-969f-1a074b57717e

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
Tariq_vd_2024.pdf
Size:
1.93 MB
Format:
Adobe Portable Document Format