Publication:
Solitonic structures and chaotic behavior in the geophysical Korteweg-de Vries equation: A μ-symmetry and g′-expansion approach

dc.contributor.authorKopçasız, Bahadır
dc.contributor.authorYaşar, Emrullah
dc.contributor.buuauthorKopçasız, Bahadır
dc.contributor.buuauthorYAŞAR, EMRULLAH
dc.contributor.departmentFen-Edebiyat Fakültesi
dc.contributor.departmentMatematik Bölümü
dc.contributor.orcid0000-0002-6364-3631
dc.contributor.orcid0000-0003-4732-5753
dc.contributor.researcheridJSK-4572-2023
dc.contributor.researcheridAAG-9947-2021
dc.date.accessioned2025-02-10T13:25:56Z
dc.date.available2025-02-10T13:25:56Z
dc.date.issued2024-06-12
dc.description.abstractThis study discusses the mu and Lie symmetries, mu-conservation laws, analytical solutions, chaotic phenomena, and sensitivity analysis of the geophysical Korteweg-de Vries equation (GKdVE). The GKdVE describes the propagation of long waves in geophysical systems like oceans, taking into account the influence of the Coriolis force due to Earth's rotation. We aim to understand the behavior of waves better in geophysical settings and their potential applications across fields like oceanography, meteorology, and climate science. By using the similarity variables, the GKdVE is transformed into a reduced ordinary differential equation (RODE). We employ the (g ')-expansion procedure in one of the RODEs to obtain soliton solutions. Thanks to the (g ')-expansion procedure, we discover six wave solutions. Through the implementation of the variational problem strategy, we derive both the Lagrangian and the mu-conservation law (mu-CL). Additionally, we revisit the planar dynamical system associated with the equation of interest, conducting a sensitive inspection to assess its sensitivity. Moreover, the introduction of a perturbed term reveals chaotic and quasi-periodic behaviors across a range of parameter values. Furthermore, we provide visual demonstrations of these properties through figures depicting the exact solutions.
dc.identifier.doi10.1142/S0217984924504190
dc.identifier.issn0217-9849
dc.identifier.scopus2-s2.0-85196086165
dc.identifier.urihttps://doi.org/10.1142/S0217984924504190
dc.identifier.urihttps://www.worldscientific.com/doi/10.1142/S0217984924504190
dc.identifier.urihttps://hdl.handle.net/11452/50254
dc.identifier.wos001248209700007
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherWorld Scientific Publ Co Pte Ltd
dc.relation.journalModern Physics Letters B
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectPainleve analysis
dc.subjectGeophysical korteweg-de vries equation
dc.subjectMu-symmetry
dc.subjectMu-conservation laws
dc.subjectExact solution
dc.subjectPhysics
dc.titleSolitonic structures and chaotic behavior in the geophysical Korteweg-de Vries equation: A μ-symmetry and g′-expansion approach
dc.typeArticle
dc.typeEarly Access
dspace.entity.typePublication
local.contributor.departmentFen-Edebiyat Fakültesi/Matematik Bölümü
local.indexed.atWOS
local.indexed.atScopus
relation.isAuthorOfPublicationa5ff66ef-0c87-4d77-a467-e3150f51624c
relation.isAuthorOfPublication.latestForDiscoverya5ff66ef-0c87-4d77-a467-e3150f51624c

Files