Publication: The diophantine equation y2 - 2yx - 3 = 0 and corresponding curves over Fp
dc.contributor.author | Tekcan, A. | |
dc.contributor.author | Özkoç, A. | |
dc.contributor.author | Alkan, H. | |
dc.contributor.buuauthor | TEKCAN, AHMET | |
dc.contributor.buuauthor | Alkan, Hatice | |
dc.contributor.buuauthor | Özkoç, Arzu | |
dc.contributor.department | Fen Edebiyat Fakültesi | |
dc.contributor.department | Matematik Ana Bilim Dalı | |
dc.contributor.scopusid | 55883777900 | |
dc.contributor.scopusid | 24485340700 | |
dc.contributor.scopusid | 35761163100 | |
dc.date.accessioned | 2025-08-06T23:38:20Z | |
dc.date.issued | 2009-11-01 | |
dc.description.abstract | In this work, we consider the number of integer solutions of Diophantine equation D: y2 - 2yx - 3 = 0 over Z and also over finite fields Fp for primes p ≥ 5. Later we determine the number of rational points on curves Ep: y2 = Pp(x) = yp/ 1 + yp/2 over Fp, where y1 and y2 are the roots of D. Also we give a formula for the sum of x- and y-coordinates of all rational points (x, y) on Ep over Fp. | |
dc.identifier.endpage | 529 | |
dc.identifier.issn | 2010-376X | |
dc.identifier.scopus | 2-s2.0-84871125934 | |
dc.identifier.startpage | 526 | |
dc.identifier.uri | https://hdl.handle.net/11452/53998 | |
dc.identifier.volume | 35 | |
dc.indexed.scopus | Scopus | |
dc.language.iso | en | |
dc.relation.journal | World Academy of Science Engineering and Technology | |
dc.rights | info:eu-repo/semantics/closedAccess | |
dc.subject | Quadratic form | |
dc.subject | Pell equation | |
dc.subject | Diophantine equation | |
dc.subject.scopus | Real Quadratic Fields and Pell's Equation | |
dc.title | The diophantine equation y2 - 2yx - 3 = 0 and corresponding curves over Fp | |
dc.type | Article | |
dspace.entity.type | Publication | |
local.contributor.department | Fen Edebiyat Fakültesi/ Matematik Ana Bilim Dalı | |
relation.isAuthorOfPublication | 17944028-a562-4782-b38f-cb890c6f31bf | |
relation.isAuthorOfPublication.latestForDiscovery | 17944028-a562-4782-b38f-cb890c6f31bf |