Publication:
On a class of Lebesgue-Ljunggren-Nagell type equations

Thumbnail Image

Date

2019-12-10

Authors

Günhan, Nursena
Soydan, Gökhan

Authors

Dąbrowski, Andrzej

Journal Title

Journal ISSN

Volume Title

Publisher

Academic Press Elsevier Science

Research Projects

Organizational Units

Journal Issue

Abstract

Text. Given odd, coprime integers a, b (a > 0), we consider the Diophantine equation ax(2) + b(2l) = 4y(n), x, y is an element of Z, l is an element of N, n odd prime, gcd(x, y) = 1. We completely solve the above Diophantine equation for a is an element of {7, 11, 19, 43, 67, 163}, and b a power of an odd prime, under the conditions 2(n-1)b(l) not equivalent to +/- 1(mod a) and gcd (n, b) = 1. For other square-free integers a > 3 and b a power of an odd prime, we prove that the above Diophantine equation has no solutions for all integers x, y with (gcd(x, y) = 1), l is an element of N and all odd primes n > 3, satisfying 2(n-1)b(l) not equivalent to +/- 1(mod a), gcd(n, b) = 1, and gcd(n, h(-a)) = 1, where h(-a) denotes the class number of the imaginary quadratic field Q(root-a). Video. For a video summary of this paper, please visit https://youtu.be/Q0peJ2GmqeM.

Description

Keywords

Diophantine equation, Lehmer number, Fibonacci number, Class number, Modular form, Elliptic curve, Diophantine equations, Fibonacci, Lucas, Mathematics

Citation

Dabrowski, A. vd. (2020). "On a class of Lebesgue-Ljunggren-Nagell type equations". Journal of Number Theory, 215, 149-159.

Collections

4

Views

24

Downloads

Search on Google Scholar