Publication:
Experimental and computational study of ductile fracture in small punch tests

dc.contributor.authorSoyarslan, Celal
dc.contributor.authorBargmann, Swantje
dc.contributor.authorHahner, Peter
dc.contributor.buuauthorÇakal, Betül Gülçimen
dc.contributor.departmentMühendislik Mimarlık Fakültesi
dc.contributor.departmentMakine Mühendisliği Bölümü
dc.contributor.scopusid36983839100
dc.date.accessioned2023-01-11T12:05:20Z
dc.date.available2023-01-11T12:05:20Z
dc.date.issued2017-08-24
dc.description.abstractA unified experimental-computational study on ductile fracture initiation and propagation during small punch testing is presented. Tests are carried out at room temperature with unnotched disks of different thicknesses where large-scale yielding prevails. In thinner specimens, the fracture occurs with severe necking under membrane tension, whereas for thicker ones a through thickness shearing mode prevails changing the crack orientation relative to the loading direction. Computational studies involve finite element simulations using a shear modified Gurson-Tvergaard-Needleman porous plasticity model with an integral-type nonlocal formulation. The predicted punch load-displacement curves and deformed profiles are in good agreement with the experimental results.
dc.identifier.citationÇakan, B. G. vd. (2017). ''Experimental and computational study of ductile fracture in small punch tests''. Materials, 10(10).
dc.identifier.issn1996-1944
dc.identifier.issue10
dc.identifier.pubmed29039748
dc.identifier.scopus2-s2.0-85031927259
dc.identifier.urihttps://doi.org/10.3390/ma10101185
dc.identifier.urihttps://www.mdpi.com/1996-1944/10/10/1185
dc.identifier.urihttp://hdl.handle.net/11452/30401
dc.identifier.volume10
dc.identifier.wos000414639000080
dc.indexed.wosSCIE
dc.language.isoen
dc.publisherMDPI
dc.relation.collaborationYurt dışı
dc.relation.collaborationSanayi
dc.relation.journalMaterials
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectChemistry
dc.subjectMaterials science
dc.subjectMetallurgy & metallurgical engineering
dc.subjectPhysics
dc.subjectDuctile fracture
dc.subjectGurson's plasticity model
dc.subjectNonlocal plasticity
dc.subjectP91 steel
dc.subjectSmall punch test
dc.subjectScale yielding conditions
dc.subjectCrack-growth
dc.subjectNonlocal damage
dc.subjectVoid nucleation
dc.subjectNeural-networks
dc.subjectP91 weldment
dc.subjectDeformation
dc.subjectToughness
dc.subjectFailure
dc.subjectBone cement
dc.subjectFinite element method
dc.subjectFracture
dc.subjectFracture testing
dc.subjectMaterials testing
dc.subjectMetallic glass
dc.subjectPlasticity
dc.subjectDuctile fracture initiation
dc.subjectFinite element simulations
dc.subjectLoad-displacement curve
dc.subjectNon-local plasticity
dc.subjectNonlocal formulations
dc.subjectDuctile fracture
dc.subjectPlasticity model
dc.subjectShear
dc.subject.scopusPunches; Creep; Indentation
dc.subject.wosChemistry, physical
dc.subject.wosMaterials science, multidisciplinary
dc.subject.wosMetallurgy & metallurgical engineering
dc.subject.wosPhysics, applied
dc.subject.wosPhysics, condensed matter
dc.titleExperimental and computational study of ductile fracture in small punch tests
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentMühendislik Mimarlık Fakültesi/Makine Mühendisliği Bölümü
local.indexed.atScopus
local.indexed.atWOS

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
Çakan_vd_2017.pdf
Size:
2.11 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: