Yayın:
Design of classification-based photonic crystal sensor for chemical substance detection

dc.contributor.authorHedayati, MK
dc.contributor.authorFerranti, F
dc.contributor.authorFratalocchi, A
dc.contributor.buuauthorZEYDAN ÇELEN, EZEL YAĞMUR
dc.contributor.buuauthorKARLIK, SAİT ESER
dc.contributor.departmentElektrik ve Elektronik Mühendisliği Ana Bilim Dalı.
dc.contributor.editorHedayati, MK
dc.contributor.editorFerranti, F
dc.contributor.editorFratalocchi, A
dc.contributor.researcheridAAJ-2404-2021
dc.contributor.researcheridKSL-6249-2024
dc.date.accessioned2025-02-07T05:37:04Z
dc.date.available2025-02-07T05:37:04Z
dc.date.issued2024-01-01
dc.descriptionBu çalışma, 08-12 Nisan 2024 tarihleri arasında Strasbourg[Fransa]’da düzenlenen Conference on Machine Learning in Photonics’da bildiri olarak sunulmuştur.
dc.description.abstractPhotonic crystals are periodic structures with refractive index changes in one, two, or three dimensions. Due to their unique design, these crystals exhibit a photonic band gap that allows light to propagate through the structure at specific frequencies and be reflected at other frequencies. In regions where light cannot pass, known as the forbidden band gap, certain photonic states are created by deliberately creating defects in the crystal. These are called defect modes. By analyzing the dispersion curve of the defect mode, valuable information can be obtained about the behavior of light within the structure. This information includes the group velocity of the light, group velocity dispersion, and sensor sensitivity.This study proposes a two-dimensional square lattice symmetry photonic crystal design. This design arranges dielectric rods on a low refractive index material according to the square lattice symmetry. The dispersion curve of the defect mode obtained through the created line defect in the structure is investigated, and the change in group velocity of the propagating light within the structure is obtained. Increasing the sensor sensitivity is achieved by reducing the group velocity of the propagating light. Classification-based machine learning methods are employed to detect chemical substances, and the performance rates of these methods are compared for chemical substance detection.
dc.identifier.doi10.1117/12.3016832
dc.identifier.isbn978-1-5106-7353-3
dc.identifier.issn0277-786X
dc.identifier.scopus2-s2.0-85200252028
dc.identifier.urihttps://doi.org/10.1117/12.3016832
dc.identifier.urihttps://hdl.handle.net/11452/50198
dc.identifier.volume13017
dc.identifier.wos001282120900033
dc.indexed.wosWOS.ISTP
dc.language.isoen
dc.publisherSpie-int Soc Optical Engineering
dc.relation.journalMachine Learning In Photonics
dc.relation.publicationcategoryKonferans Öğesi – Uluslararası
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectPhotonic crystal sensor
dc.subjectPhotonic band gap
dc.subjectSlow light
dc.subjectDefect mode
dc.subjectMachine learning
dc.subjectChemical substance detection
dc.subjectScience & technology
dc.subjectTechnology
dc.subjectPhysical sciences
dc.subjectComputer science, artificial intelligence
dc.subjectComputer science
dc.subjectOptics
dc.titleDesign of classification-based photonic crystal sensor for chemical substance detection
dc.typeconferenceObject
dc.type.subtypeProceedings Paper
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/Elektrik ve Elektronik Mühendisliği Ana Bilim Dalı.
local.contributor.departmentMühendislik Fakültesi
local.indexed.atWOS
local.indexed.atScopus
relation.isAuthorOfPublication8e21b1d2-94f7-4328-a24a-b4b6d8f74803
relation.isAuthorOfPublication0f132f65-5fb4-4eca-b987-6c1578467eef
relation.isAuthorOfPublication.latestForDiscovery8e21b1d2-94f7-4328-a24a-b4b6d8f74803

Dosyalar