Publication: New global robust stability condition for uncertain neural networks with time delays
dc.contributor.author | Arık, Sabri | |
dc.contributor.buuauthor | Özcan, Neyir | |
dc.contributor.department | Mühendislik Fakültesi | |
dc.contributor.department | Elektrik Elektronik Mühendisliği Bölümü | |
dc.contributor.scopusid | 7003726676 | |
dc.date.accessioned | 2022-09-09T08:23:36Z | |
dc.date.available | 2022-09-09T08:23:36Z | |
dc.date.issued | 2014-10-22 | |
dc.description.abstract | In this paper, we investigate the robust stability problem for the class of delayed neural networks under parameter uncertainties and with respect to nondecreasing activation functions. Firstly, some new upper bound values for the elements of the intervalized connection matrices are obtained. Then, a new sufficient condition for the existence, uniqueness and global asymptotic stability of the equilibrium point for this class of neural networks is derived by constructing an appropriate Lyapunov-Krasovskii functional and employing homeomorphism mapping theorem. The obtained result establishes a new relationship between the network parameters of the neural system and it is independent of the delay parameters. A comparative numerical example is also given to show the effectiveness, advantages and less conservatism of the proposed result. | |
dc.identifier.citation | Özcan, N. ve Arık, S. (2014). "New global robust stability condition for uncertain neural networks with time delays". Neurocomputing, 142(Special Issue), 267-274. | |
dc.identifier.endpage | 274 | |
dc.identifier.issn | 0925-2312 | |
dc.identifier.issn | 1872-8286 | |
dc.identifier.issue | Special Issue | |
dc.identifier.scopus | 2-s2.0-84904368277 | |
dc.identifier.startpage | 267 | |
dc.identifier.uri | https://doi.org/10.1016/j.neucom.2014.04.040 | |
dc.identifier.uri | https://www.sciencedirect.com/science/article/pii/S0925231214006328 | |
dc.identifier.uri | http://hdl.handle.net/11452/28605 | |
dc.identifier.volume | 142 | |
dc.identifier.wos | 000340341400028 | |
dc.indexed.wos | SCIE | |
dc.language.iso | en | |
dc.publisher | Elsevier | |
dc.relation.collaboration | Yurt içi | |
dc.relation.journal | Neurocomputing | |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi | |
dc.rights | info:eu-repo/semantics/closedAccess | |
dc.subject | Delayed neural networks | |
dc.subject | Lyapunov functionals | |
dc.subject | Stability analysis | |
dc.subject | Matrix analysis | |
dc.subject | Varying delays | |
dc.subject | Exponential Stability | |
dc.subject | Criteria | |
dc.subject | Matrices | |
dc.subject | Norm | |
dc.subject | Computer science | |
dc.subject | Neural networks | |
dc.subject | Global asymptotic stability | |
dc.subject | Global robust stability | |
dc.subject | Lyapunov-Krasovskii functionals | |
dc.subject | Uncertain neural networks | |
dc.subject | Robustness (control systems) | |
dc.subject.emtree | Article | |
dc.subject.emtree | Artificial neural network | |
dc.subject.emtree | Calculation | |
dc.subject.emtree | Homeomorphism mapping theorem | |
dc.subject.emtree | Lyapunov Krasovskii functional | |
dc.subject.emtree | Mathematical analysis | |
dc.subject.emtree | Mathematical computing | |
dc.subject.emtree | Mathematical model | |
dc.subject.emtree | Mathematical phenomena | |
dc.subject.emtree | Priority journal | |
dc.subject.emtree | Robust stability analysis | |
dc.subject.emtree | Time delays analysis | |
dc.subject.scopus | BAM Neural Network; Time Lag; Bidirectional Associative Memory | |
dc.subject.wos | Computer science, artificial intelligence | |
dc.title | New global robust stability condition for uncertain neural networks with time delays | |
dc.type | Article | |
dc.wos.quartile | Q2 | |
dspace.entity.type | Publication | |
local.contributor.department | Mühendislik Fakültesi/Elektrik Elektronik Mühendisliği Bölümü | |
local.indexed.at | Scopus | |
local.indexed.at | WOS |
Files
License bundle
1 - 1 of 1
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: