Yayın:
Enhanced grasshopper optimization algorithm using elite opposition-based learning for solving real-world engineering problems

dc.contributor.authorYıldız, Betül Sultan
dc.contributor.authorPholdee, Nantiwat
dc.contributor.authorBureerat, Sujin
dc.contributor.authorYıldız, Ali Rıza
dc.contributor.authorSait, Sadik M
dc.contributor.buuauthorYILDIZ, BETÜL SULTAN
dc.contributor.buuauthorYILDIZ, ALİ RIZA
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentOtomotiv Mühendisliği Bölümü
dc.contributor.departmentElektrik ve Enerji Bölümü
dc.contributor.orcid0000-0002-7493-2068
dc.contributor.orcid0000-0003-1790-6987
dc.contributor.scopusid57094682600
dc.contributor.scopusid7102365439
dc.date.accessioned2025-05-13T06:34:20Z
dc.date.issued2022-10-01
dc.description.abstractOptimizing real-life engineering design problems are challenging and somewhat difficult if optimum solutions are expected. The development of new efficient optimization algorithms is crucial for this task. In this paper, a recently invented grasshopper optimization algorithm is upgraded from its original version. The method is improved by adding an elite opposition-based learning methodology to an elite opposition-based learning grasshopper optimization algorithm. The new optimizer, which is elite opposition-based learning grasshopper optimization method (EOBL-GOA), is validated with several engineering design probles such as a welded beam design problem, car side crash problem, multiple clutch disc problem, hydrostatic thrust bearing problem, three-bar truss, and cantilever beam problem, and finally used for the optimization of a suspension arm of the vehicles. The optimum results reveal that the EOBL-GOA is among the best algorithms reported in the literature.
dc.identifier.doi10.1007/s00366-021-01368-w
dc.identifier.endpage4219
dc.identifier.issn0177-0667
dc.identifier.issue5
dc.identifier.scopus2-s2.0-85107580019
dc.identifier.startpage4207
dc.identifier.urihttps://hdl.handle.net/11452/51666
dc.identifier.volume38
dc.indexed.scopusScopus
dc.language.isoen
dc.publisherSpringer
dc.relation.journalEngineering with Computers
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectWelded beam
dc.subjectVehicle crashworthiness
dc.subjectThree-bar truss
dc.subjectMulti-clutch disc
dc.subjectHydrostatic thrust bearing design
dc.subjectGrasshopper optimization algorithm
dc.subjectElite opposition-based learning
dc.subjectCantilever beam suspension arm
dc.subject.scopusOptimization Algorithms in Automotive Design Applications
dc.titleEnhanced grasshopper optimization algorithm using elite opposition-based learning for solving real-world engineering problems
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/Otomotiv Mühendisliği Bölümü
local.indexed.atScopus
relation.isAuthorOfPublicatione544f464-5e4a-4fb5-a77a-957577c981c6
relation.isAuthorOfPublication89fd2b17-cb52-4f92-938d-a741587a848d
relation.isAuthorOfPublication.latestForDiscoverye544f464-5e4a-4fb5-a77a-957577c981c6

Dosyalar