Publication:
Comparing the prediction capabilities of artificial neural network (ANN) and nonlinear regression models in pet-poy yarn characteristics and optimization of yarn production conditions

dc.contributor.buuauthorYıldırım, Kenan
dc.contributor.buuauthorÖğüt, Hamdi
dc.contributor.buuauthorUlucay, Yusuf
dc.contributor.departmentMühendislik Mimarlık Fakültesi
dc.contributor.departmentTekstil Mühendisliği Bölümü
dc.contributor.orcid0000-0002-1640-6035
dc.contributor.researcheridHKM-7750-2023
dc.contributor.scopusid30767899000
dc.contributor.scopusid55883276800
dc.contributor.scopusid6601918936
dc.date.accessioned2023-03-06T06:18:22Z
dc.date.available2023-03-06T06:18:22Z
dc.date.issued2017
dc.description.abstractIn the manufacture of yarn, predicting the effect of changing production conditions is vital to reducing defects in the end product. This study compares, for the first time, non-linear regression and artificial neural network (ANN) models in predicting 10 yarn properties shaped by the influence of winding speed, quenching air temperature and/or quenching air speed during production. A multilayer perceptron ANN model was created by training 81 patterns using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm. The hyperbolic tangent, or TanH, activation function and logistic activation functions were used for the hidden and output layers respectively. Results showed that the ANN approach exhibited a greater prediction capability over the non-linear regression method. ANN simultaneously predicted all of the 10 final properties of a yarn; tensile strength, tensile strain, draw force, crystallinity ratio, dye uptake based on the colour strengths (K/S), brightness, boiling shrinkage and yarn evenness, more accurately than the non-linear regression model (R-2 = 0.97 vs. R-2 = 0.92). These results lend support to the idea that the ANN analysis combined with optimization can be used successfully to prevent production defects by fine tuning the production environment.
dc.description.sponsorshipTextile Company - KORTEKS
dc.identifier.citationYıldırım, K. vd. (2017). ''Comparing the prediction capabilities of artificial neural network (ANN) and nonlinear regression models in pet-poy yarn characteristics and optimization of yarn production conditions''. Journal of Engineered Fibers and Fabrics, 12(3), 7-16.
dc.identifier.endpage16
dc.identifier.issn1558-9250
dc.identifier.issue3
dc.identifier.scopus2-s2.0-85028661191
dc.identifier.startpage7
dc.identifier.urihttps://doi.org/10.1177/15589250170120
dc.identifier.urihttps://journals.sagepub.com/doi/10.1177/155892501701200302
dc.identifier.urihttp://hdl.handle.net/11452/31347
dc.identifier.volume12
dc.identifier.wos000417360400002
dc.indexed.wosSCIE
dc.language.isoen
dc.publisherSage Puplications
dc.relation.journalJournal of Engineered Fibers and Fabrics
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectMaterials science
dc.subjectParameters
dc.subjectAlgorithms
dc.subjectMathematical models
dc.subjectNeural networks
dc.subjectOptimization
dc.subjectYarn
dc.subjectDefects
dc.subjectForecasts
dc.subjectManufacture
dc.subjectQuenching
dc.subjectChemical activation
dc.subjectDefects
dc.subjectForecasting
dc.subjectHyperbolic functions
dc.subjectLinear regression
dc.subjectManufacture
dc.subjectNeural networks
dc.subjectNonlinear programming
dc.subjectTensile strain
dc.subjectWool
dc.subjectArtificial neural network models
dc.subjectNon-linear regression
dc.subjectNon-linear regression method
dc.subjectNonlinear regression models
dc.subjectPrediction capability
dc.subjectProduction environments
dc.subjectRegression analysis
dc.subject.scopusYarns; Cotton Fibers; Weft
dc.subject.wosMaterials science, textiles
dc.titleComparing the prediction capabilities of artificial neural network (ANN) and nonlinear regression models in pet-poy yarn characteristics and optimization of yarn production conditions
dc.typeArticle
dc.wos.quartileQ3
dspace.entity.typePublication
local.contributor.departmentMühendislik Mimarlık Fakültesi/Tekstil Mühendisliği Bölümü
local.indexed.atScopus
local.indexed.atWOS

Files

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: