Yayın:
Assessment of machine learning methods predicting the axial vibration frequencies of microbars

dc.contributor.authorTariq, Aiman
dc.contributor.authorUzun, Büşra
dc.contributor.authorDeliktaş, Babur
dc.contributor.authorYaylı, Mustafa Özgür
dc.contributor.buuauthorTariq, Aiman
dc.contributor.buuauthorUZUN, BÜŞRA
dc.contributor.buuauthorDELİKTAŞ, BABÜR
dc.contributor.buuauthorYAYLI, MUSTAFA ÖZGÜR
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentİnşaat Mühendisliği Bölümü
dc.contributor.orcid0000-0002-7636-7170
dc.contributor.orcid0000-0003-2231-170X
dc.contributor.researcheridAAH-8687-2021
dc.contributor.researcheridAAJ-6390-2021
dc.contributor.researcheridLCS-1995-2024
dc.contributor.researcheridABE-6914-2020
dc.date.accessioned2025-01-08T05:33:10Z
dc.date.available2025-01-08T05:33:10Z
dc.date.issued2023-12-31
dc.description.abstractMicrobars are one of the important components of microelectromechanical systems. With the recent increase in their applications, the importance of understanding their mechanical response has become an important topic. In this study, for the first time, the mechanical behavior of microbars based on the strain gradient theory is investigated using a machine learning (ML) approach. Four distinct ML models, namely artificial neural network (ANN), support vector regression (SVR), decision tree regression (DTR), and random forest regression (RFR), are developed for microbars with clamped boundary conditions. The performance of these models is individually assessed using five different metrics: coefficient of determination (R2), Mean Absolute Error (MAE), root mean square error (RMSE), mean absolute percentage error (MAPE) and Nash-Sutcliffe efficiency coefficient (NSE). The best-performing model is selected based on these comparisons. Additionally, a semi-analytical approach is employed to determine the natural frequencies of microbars under general elastic boundary conditions using the Fourier sine series and Stokes' transform. While the R2 value for all four models indicated a good fit of 0.999, the percentage difference in MAE and RMSE values between the training and testing data for DTR and RFR models was relatively higher as compared to ANN and SVR. The results showed that ANN and SVR models exhibit the best performance in predicting the natural frequencies on both training and testing data across all three metrics. Finally, a study on the free axial vibration frequencies of microbar under various effects was conducted.
dc.identifier.doi10.1002/zamm.202300916
dc.identifier.eissn1521-4001
dc.identifier.issn0044-2267
dc.identifier.issue3
dc.identifier.scopus2-s2.0-85180883428
dc.identifier.urihttps://onlinelibrary.wiley.com/doi/10.1002/zamm.202300916
dc.identifier.urihttps://hdl.handle.net/11452/49370
dc.identifier.volume104
dc.identifier.wos001133213900001
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherWiley
dc.relation.journalZamm-Zeitschrift Fur Angewandte Mathematik Und Mechanik
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectMechanical analysis
dc.subjectClassifiers
dc.subjectPerformance
dc.subjectRegression
dc.subjectForest
dc.subject Flow
dc.subjectScience & technology
dc.subjectPhysical sciences
dc.subjectTechnology
dc.subjectMathematics, applied
dc.subjectMechanics
dc.subjectMathematics
dc.subjectMechanics
dc.titleAssessment of machine learning methods predicting the axial vibration frequencies of microbars
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/İnşaat Mühendisliği Bölümü
local.indexed.atWOS
local.indexed.atScopus
relation.isAuthorOfPublication9d931598-bdd6-4fdd-b625-909ec0444b5c
relation.isAuthorOfPublication61c4d3a5-cfbe-45da-969f-1a074b57717e
relation.isAuthorOfPublicationf9782842-abc1-42a9-a3c2-76a6464363be
relation.isAuthorOfPublication.latestForDiscovery9d931598-bdd6-4fdd-b625-909ec0444b5c

Dosyalar