Publication:
4-Transitivity and 6-figures in finite klingenberg planes of parameters (p2k-1, p)

dc.contributor.authorAkpinar A.
dc.contributor.authorCelik B.
dc.contributor.authorCiftci S.
dc.contributor.department
dc.contributor.orcid
dc.contributor.scopusid
dc.date.accessioned2025-08-06T23:31:38Z
dc.date.issued2010-12-01
dc.description.abstractIn this paper, we carry over some of the results which are valid on a certain class of Moufang-Klingenberg planes M(A) coordinatized by an local alternative ring A:= A(ε) = A+Aε of dual numbers to finite projective Klingenberg plane M(A) obtained by taking local ring Z<inf>q</inf> (where prime power q = p<sup>k</sup>) instead of A. So, we show that the collineation group of M(A) acts transitively on 4-gons, and that any 6-figure corresponds to only one inversible m ∈ A.
dc.identifier.endpage
dc.identifier.issn2010-3905
dc.identifier.issue1
dc.identifier.scopus2-s2.0-77949906885
dc.identifier.startpage
dc.identifier.urihttps://hdl.handle.net/11452/53919
dc.identifier.volume4
dc.indexed.scopusScopus
dc.language.iso
dc.publisher
dc.relation.journalInternational Journal of Computational and Mathematical Sciences
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectProjective collineation
dc.subjectFinite klingenberg plane
dc.subject6-figures
dc.subject4-transitivity
dc.subject.scopus
dc.title4-Transitivity and 6-figures in finite klingenberg planes of parameters (p2k-1, p)
dc.typeArticle
dspace.entity.typePublication

Files

Collections