Publication:
Optimization of electric vehicle design problems using improved electric eel foraging optimization algorithm

dc.contributor.authorMehta, Pranav
dc.contributor.authorSait, Sadiq M.
dc.contributor.buuauthorYILDIZ, BETÜL SULTAN
dc.contributor.buuauthorYıldız, Betül Sultan
dc.contributor.buuauthorYıldız, Alı Rıza
dc.contributor.buuauthorYILDIZ, ALİ RIZA
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentMakina Mühendisliği Ana Bilim Dalı.
dc.contributor.orcid0000-0002-1361-7363
dc.contributor.researcheridAAH-6495-2019
dc.date.accessioned2025-01-15T10:26:16Z
dc.date.available2025-01-15T10:26:16Z
dc.date.issued2024-07-05
dc.description.abstractThis paper introduces a novel approach, the Modified Electric Eel Foraging Optimization (EELFO) algorithm, which integrates artificial neural networks (ANNs) with metaheuristic algorithms for solving multidisciplinary design problems efficiently. Inspired by the foraging behavior of electric eels, the algorithm incorporates four key phases: interactions, resting, hunting, and migrating. Mathematical formulations for each phase are provided, enabling the algorithm to explore and exploit solution spaces effectively. The algorithm's performance is evaluated on various real-world optimization problems, including weight optimization of engineering components, economic optimization of pressure handling vessels, and cost optimization of welded beams. Comparative analyses demonstrate the superiority of the MEELFO algorithm in achieving optimal solutions with minimal deviations and computational effort compared to existing metaheuristic methods.
dc.identifier.doi10.1515/mt-2024-0098
dc.identifier.endpage1240
dc.identifier.issn0025-5300
dc.identifier.issue8
dc.identifier.scopus2-s2.0-85197742022
dc.identifier.startpage1230
dc.identifier.urihttps://doi.org/10.1515/mt-2024-0098
dc.identifier.urihttps://hdl.handle.net/11452/49441
dc.identifier.volume66
dc.identifier.wos 001262194500001
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherWalter De Gruyter Gmbh
dc.relation.journalMaterials Testing
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectElectric vehicle component design
dc.subjectElectric eel foraging optimization algorithm
dc.subjectOptimization
dc.subjectArtificial neural network
dc.subjectDesign
dc.subjectScience & technology
dc.subjectTechnology
dc.subjectMaterials science, characterization & testing
dc.subjectMaterials science
dc.titleOptimization of electric vehicle design problems using improved electric eel foraging optimization algorithm
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/Makina Mühendisliği Ana Bilim Dalı.
local.indexed.atWOS
local.indexed.atScopus
relation.isAuthorOfPublicatione544f464-5e4a-4fb5-a77a-957577c981c6
relation.isAuthorOfPublication89fd2b17-cb52-4f92-938d-a741587a848d
relation.isAuthorOfPublication.latestForDiscovery89fd2b17-cb52-4f92-938d-a741587a848d

Files