Publication:
A hybrid deep learning model to estimate the future electricity demand of sustainable cities

dc.contributor.authorDoğan, Gülay Yıldız
dc.contributor.authorAksoy, Aslı
dc.contributor.authorÖztürk, Nursel
dc.contributor.buuauthorDoğan, Gülay Yıldız
dc.contributor.buuauthorAKSOY, ASLI
dc.contributor.buuauthorÖZTÜRK, NURSEL
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentEndüstri Mühendisliği Bölümü
dc.contributor.orcid0000-0002-2971-2701
dc.contributor.orcid0000-0002-9835-0783
dc.contributor.orcid0000-0001-6810-8198
dc.contributor.researcheridAAG-9235-2021
dc.contributor.researcheridAAG-9336-2021
dc.contributor.researcheridLCY-4223-2024
dc.date.accessioned2025-01-30T11:30:32Z
dc.date.available2025-01-30T11:30:32Z
dc.date.issued2024-08-01
dc.description.abstractRapid population growth, economic growth, and technological developments in recent years have led to a significant increase in electricity consumption. Therefore, the estimation of electrical energy demand is crucial for the planning of electricity generation and consumption in cities. This study proposes a hybrid deep learning model that combines convolutional neural network (CNN) and long short-term memory (LSTM) techniques, both of which are deep learning techniques, to estimate electrical load demand. A hybrid deep learning model and LSTM model were applied to a dataset containing hourly electricity consumption and meteorological information of a city in T & uuml;rkiye from 2017 to 2021. The results were evaluated using mean absolute percent error (MAPE), root mean square error (RMSE), mean absolute error (MAE), and coefficient of determination (R2) metrics. The proposed CNN-LSTM hybrid model was compared to the LSTM model, with lower MAPE, MAE, and RMSE values. Furthermore, the CNN-LSTM model exhibited superior prediction performance with an R2 value of 0.8599 compared to the LSTM model with an R2 value of 0.8086. These results demonstrate the effectiveness of the proposed deep learning model in accurately estimating future electrical load demand to plan electricity generation for sustainable cities.
dc.identifier.doi10.3390/su16156503
dc.identifier.eissn2071-1050
dc.identifier.issue15
dc.identifier.scopus2-s2.0-85200787089
dc.identifier.urihttps://doi.org/10.3390/su16156503
dc.identifier.urihttps://www.mdpi.com/2071-1050/16/15/6503
dc.identifier.urihttps://hdl.handle.net/11452/49948
dc.identifier.volume16
dc.identifier.wos001286881700001
dc.indexed.wosWOS.SCI
dc.indexed.wosWOS.SSCI
dc.language.isoen
dc.publisherMDPI
dc.relation.journalSustainability
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectNeural-network
dc.subjectLoad
dc.subjectConsumption
dc.subjectCnn
dc.subjectElectrical energy demand forecast
dc.subjectLstm
dc.subjectCnn
dc.subjectCnn-lstm hybrid model
dc.subjectDeep learning model
dc.subjectScience & technology
dc.subjectLife sciences & biomedicine
dc.subjectGreen & sustainable science & technology
dc.subjectEnvironmental sciences
dc.subjectEnvironmental studies
dc.subjectScience & technology - other topics
dc.titleA hybrid deep learning model to estimate the future electricity demand of sustainable cities
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/Endüstri Mühendisliği Bölümü
local.indexed.atWOS
local.indexed.atScopus
relation.isAuthorOfPublicationfba22d2b-3a7a-4611-82bd-e6abffd11493
relation.isAuthorOfPublication87300a81-21ba-4066-b79e-9393c516973f
relation.isAuthorOfPublication.latestForDiscoveryfba22d2b-3a7a-4611-82bd-e6abffd11493

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
Doğan_vd_2024.pdf
Size:
2.32 MB
Format:
Adobe Portable Document Format