Yayın:
On the thermal vibration analysis of a FG nanotube with deformable boundary effects

dc.contributor.authorAkpınar, Murat
dc.contributor.authorUzun, Büşra
dc.contributor.authorYaylı, Mustafa Özgür
dc.contributor.buuauthorAKPINAR, MURAT
dc.contributor.buuauthorUZUN, BÜŞRA
dc.contributor.buuauthorYAYLI, MUSTAFA ÖZGÜR
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentİnşaat Mühendisliği Bölümü
dc.contributor.orcid0009-0002-1683-1987
dc.contributor.orcid0000-0002-7636-7170
dc.contributor.orcid0000-0003-2231-170X
dc.contributor.scopusid59344714900
dc.contributor.scopusid57208629064
dc.contributor.scopusid44661926700
dc.date.accessioned2025-11-28T08:04:12Z
dc.date.issued2025-12-01
dc.description.abstractPurpose: The purpose of this study is to analyze the free lateral vibration behavior of composite nanotubes under thermal environments, considering functionally graded material properties and small-scale effects using strain gradient theory. The study aims to develop a more flexible and accurate vibration model by introducing elastic boundary conditions. Methodology: A novel mechanical model is proposed where boundary supports are represented using elastic springs. Lateral vibrations are modeled with a Fourier sine series representation of displacement, and boundary conditions are implemented via Stokes' transforms to simulate both rigid and deformable supports. The strain gradient theory is employed to capture size-dependent effects. The proposed model's accuracy is verified through comparison with literature and Navier-type solution. Results: Numerical investigations indicate that an increase in temperature change and nanotube length reduces the natural frequencies. Conversely, increasing the material length scale parameter, material grading index, outer-to-inner radius ratio, and boundary spring stiffness leads to higher vibration frequencies. Conclusions: The study provides a comprehensive understanding of the vibrational characteristics of FG nanotubes under thermal effects, especially under various boundary conditions. The results highlight the significance of considering both deformable boundaries and temperature dependence in nanoscale vibration analysis. These insights are valuable for the design of advanced nanodevices such as nanosensors, nanoresonators, and actuators.
dc.identifier.doi10.1007/s42417-025-02112-0
dc.identifier.issn2523-3920
dc.identifier.issue8
dc.identifier.scopus2-s2.0-105019334083
dc.identifier.urihttps://hdl.handle.net/11452/56886
dc.identifier.volume13
dc.indexed.scopusScopus
dc.language.isoen
dc.publisherSpringer
dc.relation.journalJournal of Vibration Engineering and Technologies
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectThermal effects
dc.subjectStrain gradient theory
dc.subjectLateral vibration
dc.subjectFunctionally graded nanotube
dc.subjectDeformable boundary conditions
dc.subject.scopusNonlocal Elasticity and Vibration in Advanced Materials
dc.titleOn the thermal vibration analysis of a FG nanotube with deformable boundary effects
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/İnşaat Mühendisliği Bölümü
local.indexed.atScopus
relation.isAuthorOfPublicationdb952b13-125c-47b9-a3cf-e611b79dc97c
relation.isAuthorOfPublication9d931598-bdd6-4fdd-b625-909ec0444b5c
relation.isAuthorOfPublicationf9782842-abc1-42a9-a3c2-76a6464363be
relation.isAuthorOfPublication.latestForDiscoverydb952b13-125c-47b9-a3cf-e611b79dc97c

Dosyalar