Publication: Use of genetic algorithm to design optimal neural network structure
dc.contributor.buuauthor | Öztürk, Nursel | |
dc.contributor.department | Mühendislik Fakültesi | |
dc.contributor.department | Endüstri Mühendisliği Bölümü | |
dc.contributor.researcherid | AAG-9336-2021 | |
dc.contributor.scopusid | 7005688805 | |
dc.date.accessioned | 2022-04-21T05:49:35Z | |
dc.date.available | 2022-04-21T05:49:35Z | |
dc.date.issued | 2003 | |
dc.description.abstract | In this research, neural network (NN) and genetic algorithm (GA) are used together to design optimal NN structure. The proposed approach combines the characteristics of GA and NN to reduce the computational complexity of artificial intelligence applications in design and manufacturing. Genetic input selection approach is introduced to obtain optimal NN topology. Experimental results are given to evaluate the performance of the proposed system. | |
dc.identifier.citation | Öztürk, N. (2003). “Use of genetic algorithm to design optimal neural network structure”. Engineering Computations, 20(7-8), 979-997. | |
dc.identifier.endpage | 997 | |
dc.identifier.issn | 0264-4401 | |
dc.identifier.issue | 7-8 | |
dc.identifier.scopus | 2-s2.0-17344381470 | |
dc.identifier.startpage | 979 | |
dc.identifier.uri | https://doi.org/10.1108/02644400310502982 | |
dc.identifier.uri | https://www.emerald.com/insight/content/doi/10.1108/02644400310502982/full/html | |
dc.identifier.uri | http://hdl.handle.net/11452/25915 | |
dc.identifier.volume | 20 | |
dc.identifier.wos | 000223976000009 | |
dc.indexed.wos | SCIE | |
dc.language.iso | en | |
dc.publisher | Emerald Group Publishing | |
dc.relation.journal | Engineering Computations | |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi | |
dc.rights | info:eu-repo/semantics/closedAccess | |
dc.subject | Computer science | |
dc.subject | Engineering | |
dc.subject | Mathematics | |
dc.subject | Mechanics | |
dc.subject | Mathematical modelling | |
dc.subject | Programming and algorithm theory | |
dc.subject | Neural nets | |
dc.subject | Feature recognition | |
dc.subject | Manufacturing features | |
dc.subject | Optimization | |
dc.subject | Search | |
dc.subject | Classification | |
dc.subject | System | |
dc.subject | Models | |
dc.subject | Artificial intelligence | |
dc.subject | Backpropagation | |
dc.subject | Computational complexity | |
dc.subject | Design | |
dc.subject | Feature extraction | |
dc.subject | Learning systems | |
dc.subject | Manufacture | |
dc.subject | Mathematical models | |
dc.subject | Mathematical programming | |
dc.subject | Multilayer neural networks | |
dc.subject | Genetic input selection method | |
dc.subject | Neural network structure | |
dc.subject | Genetic algorithms | |
dc.subject.scopus | Computer Aided Manufacturing; Feature Recognition; Machining | |
dc.subject.wos | Computer science, interdisciplinary applications | |
dc.subject.wos | Engineering, multidisciplinary | |
dc.subject.wos | Mathematics, interdisciplinary applications | |
dc.subject.wos | Mechanics | |
dc.title | Use of genetic algorithm to design optimal neural network structure | |
dc.type | Article | |
dc.wos.quartile | Q3 | |
dc.wos.quartile | Q2 (Engineering, multidisciplinary) | |
dspace.entity.type | Publication | |
local.contributor.department | Mühendislik Fakültesi/Endüstri Mühendisliği Bölümü | |
local.indexed.at | Scopus | |
local.indexed.at | WOS |
Files
License bundle
1 - 1 of 1
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: