Publication:
Modeling of fracture in small punch tests for small- and large-scale yielding conditions at various temperatures

dc.contributor.authorSoyarslan, Celal
dc.contributor.authorBargmann, Swantje
dc.contributor.authorHahner, Peter
dc.contributor.buuauthorGülçimen, Betül
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentMakine Mühendisliği Bölümü
dc.contributor.scopusid36983839100
dc.date.accessioned2022-10-26T12:51:32Z
dc.date.available2022-10-26T12:51:32Z
dc.date.issued2015-12-10
dc.description.abstractWe present a systematic numerical study on temperature dependent fracture mode change in small punch tests. Following Needleman and Tvergaard (2000), we model the material as thermo-inelastic, where the ductile fracture mode, by void nucleation, growth and coalescence is accounted for by Gurson's porous metal plasticity (Gurson, 1977). The brittle fracture mode by cleavage is accounted for by Ritchie-Knott-Rice's deterministic maximum principal stress criterion (Ritchie et al., 1973). The well-known problem of mesh dependence associated with softening material behavior is remedied by using an integral type nonlocal formulation similar to that presented in Tvergaard and Needleman (1995). Two length scales are incorporated into the constitutive relations: the ductile fracture length scale is based on the average inclusion distance and associated with the nonlocal evolution equation for the porosity. The brittle fracture length scale is based on the average grain size and associated with the material region at which the maximum principal stress is averaged out. The material model is used to simulate small punch tests at -196 degrees C, -158 degrees C and 25 degrees C of notched and unnotched specimens of P91 steel representative for small- and large-scale yielding conditions, respectively. The simulated fracture modes and patterns show a very good agreement with experiments: for 196 degrees C brittle fracture propagating normal to the maximum (tensile) principal stress prevails. For 25 degrees C ductile fracture is governed by shear localization with voidage. The simulations also show that the deformation energy is considerably higher for the upper shelf tests compared to the lower shelf tests.
dc.description.sponsorshipGerman Research Foundation (DFG) - PAK250
dc.identifier.citationSoyarslan, C. vd. (2016). "Modeling of fracture in small punch tests for small- and large-scale yielding conditions at various temperatures". International Journal of Mechanical Sciences, 106, 266-285.
dc.identifier.endpage285
dc.identifier.issn0020-7403
dc.identifier.issn1879-2162
dc.identifier.scopus2-s2.0-84954134513
dc.identifier.startpage266
dc.identifier.urihttps://doi.org/10.1016/j.ijmecsci.2015.12.007
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S0020740315004245
dc.identifier.urihttp://hdl.handle.net/11452/29217
dc.identifier.volume106
dc.identifier.wos000371842500024
dc.indexed.wosSCIE
dc.language.isoen
dc.publisherElsevier
dc.relation.collaborationYurt dışı
dc.relation.collaborationSanayi
dc.relation.journalInternational Journal of Mechanical Sciences
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectEngineering
dc.subjectMechanics
dc.subjectDuctile-brittle transition
dc.subjectSmall punch test
dc.subjectGurson-Tvergaard-Needleman plasticity
dc.subjectRitchie-Knott-Rice model
dc.subjectDuctile-brittle transition
dc.subjectElastic-plastic solids
dc.subjectModified 9cr-1mo steel
dc.subjectNonlocal damage
dc.subjectCrack-growth
dc.subjectCleavage fracture
dc.subjectContinuum theory
dc.subjectVoid nucleation
dc.subjectNeural-networks
dc.subjectTensile-stress
dc.subjectBone cement
dc.subjectDuctile fracture
dc.subjectFracture
dc.subjectMaterials testing
dc.subjectMetallic glass
dc.subjectConstitutive relations
dc.subjectDuctile brittle transition
dc.subjectLarge-scale yielding
dc.subjectMaximum principal stress
dc.subjectNonlocal formulations
dc.subjectRice-model
dc.subjectTemperature dependent
dc.subjectBrittle fracture
dc.subject.scopusPunches; Creep; Indentation
dc.subject.wosEngineering, mechanical
dc.subject.wosMechanics
dc.titleModeling of fracture in small punch tests for small- and large-scale yielding conditions at various temperatures
dc.typeArticle
dc.wos.quartileQ1
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/Makine Mühendisliği Bölümü
local.indexed.atScopus
local.indexed.atWOS

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
Gulcimen_vd_2016.pdf
Size:
7.1 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: