Yayın:
An inverse parameter identification in finite element problems using machine learning-aided optimization framework

dc.contributor.authorTarıq, A.
dc.contributor.authorDeliktaş, B.
dc.contributor.buuauthorDELİKTAŞ, BABÜR
dc.contributor.buuauthorAL MADI, LAITH TARIQ FUAD
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentİnşaat Mühendisliği Ana Bilim Dalı
dc.contributor.researcheridLCS-1995-2024
dc.date.accessioned2025-10-09T21:21:57Z
dc.date.issued2025-01-16
dc.description.abstractBackgroundThe ability of finite element analysis to produce high fidelity results is greatly dependent on quality of constitutive model and the accuracy of their parameters. As such, the calibration of phenomenological constitutive models to replicate real-world behaviors has remained a focal point of many research works.ObjectiveA new inverse identification approach combining numerical-experimental methods and data-driven techniques to characterize the nonlinear response of materials using a single experiment is proposed.MethodsThis approach integrates finite element analysis, optimization methods and machine learning techniques, such as Artificial Neural Networks and Support Vector Regression, to accurately determine model parameters while significantly reducing computational time. This approach can be used to characterize a wide range of models irrespective of the number of parameters involved. A detailed flowchart of the methodology focusing on its implementation aspects is provided and its each module is explained.ResultsThe proposed model calibration approach successfully identified eight parameters for a cohesive zone model implemented in user element subroutine (UEL), four parameters for a hardening model implemented in user material subroutine (UMAT), and five parameters for a Johnson-Cook plasticity model. In all cases, this method achieved an excellent fit between the simulation and experimental results. Moreover, it demonstrated a significant improvement in efficiency, being 2-3 times faster than traditional optimization algorithms in determining optimal parameters.ConclusionsBased on the presented investigations, the proposed machine learning-based inverse method can significantly accelerate the parameter identification procedure and can be extended to a wide range of material models.
dc.identifier.doi10.1007/s11340-024-01136-z
dc.identifier.endpage349
dc.identifier.issn0014-4851
dc.identifier.issue3
dc.identifier.scopus2-s2.0-86000430736
dc.identifier.startpage325
dc.identifier.urihttps://doi.org/10.1007/s11340-024-01136-z
dc.identifier.urihttps://hdl.handle.net/11452/55465
dc.identifier.volume65
dc.identifier.wos001397086000001
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherSpringer
dc.relation.bapFGA-2022-1211
dc.relation.journalExperimental mechanics
dc.subjectModified Johnson-Cook
dc.subjectStrain-rate
dc.subjectModel
dc.subjectAlloy
dc.subject Behavior
dc.subjectStress
dc.subjectAlgoritma
dc.subjectParameter identification
dc.subjectConstitutive model
dc.subjectInverse method
dc.subjectMachine learning
dc.subjectFinite element analysis
dc.subjectScience & Technology
dc.subjectTechnology
dc.subjectMaterials Science, Multidisciplinary
dc.subjectMechanics
dc.subjectMaterials Science, Characterization & Testing
dc.subjectMaterials Science
dc.subjectMechanics
dc.titleAn inverse parameter identification in finite element problems using machine learning-aided optimization framework
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/İnşaat Mühendisliği Ana Bilim Dalı
local.indexed.atWOS
local.indexed.atScopus
relation.isAuthorOfPublication61c4d3a5-cfbe-45da-969f-1a074b57717e
relation.isAuthorOfPublication3a1e360b-2b67-4b55-9dbd-a8b6d117330c
relation.isAuthorOfPublication.latestForDiscovery61c4d3a5-cfbe-45da-969f-1a074b57717e

Dosyalar

Orijinal seri

Şimdi gösteriliyor 1 - 1 / 1
Küçük Resim
Ad:
Tariq_Deliktaş_2025.pdf
Boyut:
3.16 MB
Format:
Adobe Portable Document Format