Publication:
An optimization strategy with SV-neutrosophic quaternion information and probabilistic hesitant fuzzy rough Einstein aggregation operator

dc.contributor.authorLiu J.B.
dc.contributor.authorİsmail, Rashad
dc.contributor.authorKamran M.
dc.contributor.authorAl-Sabri E.H.A.
dc.contributor.authorAshraf S.
dc.contributor.authorCangül, İsmail Naci
dc.contributor.buuauthorCANGÜL, İSMAİL NACİ
dc.contributor.buuauthorİsmail, Rashad
dc.contributor.departmentFen ve Edebiyat Fakültesi
dc.contributor.departmentMatematik Bölümü
dc.contributor.orcid0000-0002-0700-5774
dc.contributor.orcid0000-0002-7080-3824
dc.contributor.scopusid57189022403
dc.contributor.scopusid57834469500
dc.date.accessioned2025-05-13T06:29:56Z
dc.date.issued2023-01-01
dc.description.abstractThe single valued neutrosophic probabilistic hesitant fuzzy rough Einstein aggregation operator (SV-NPHFRE-AO) is an extension of the neutrosophic probabilistic hesitant fuzzy rough set theory. It is a powerful decision-making tool that combines the concepts of neutrosophic logicprobability theory, hesitant fuzzy sets, rough sets, and Einstein aggregation operators. SV-NPHFREAO can be applied in many fields, including livestock decision making. Making judgments aboua wide range of issues, including feed formulation, breeding program design, disease diagnosticsand market analysis, is part of the process of managing livestock. By combining data from many sources, SV-NPHFRE-AO can assist decision-makers in livestock management in integrating and evaluating diverse criteria, which can result in more informed choices. It also provides a more accurate and comprehensive representation of decision-making problems by considering the multiple criteria involved and the relationships between them. The single valued neutrosophic set (SVNS) aggregation operators (AOs) based on Einstein properties using hesitant fuzzy sets (HFSs) and probabilistic hesitant fuzzy sets (PHFSs) with rough sets (RSs) are proposed in this study and can handle a large volume of data, making them suitable for complex and large-scale livestock decision-making problems. We first defined SV-neutrosophic probabilistic hesitant fuzzy rough weighted averaging (SV-NPHFRWA), SV-neutrosophic probabilistic hesitant fuzzy rough weighted geometric (SV-NPHFRWG), SV-neutrosophic probabilistic hesitant fuzzy rough ordered weighted averaging (SV-NPHFROWA) and SV-neutrosophic probabilistic hesitant fuzzy rough hybrid weighted averaging (SV-NPHFRHWA) AOs. Then, based on Einstein properties, we extended these operators and developed the single-valued neutrosophic probabilistic hesitant fuzzy rough Einstein weighted averaging (SV-NPHFREWA) operator. Additionally, an illustrative scenario to show the applicability of the suggested decision-making approach is provided, along with a sensitivity analysis and comparison analysis, which demonstrate that its outcomes are realistic and reliable. We also provide another relation between criteria and alternatives of decision-making using neutrosophic information with quaternion context. By using such type of operators, livestock managers can make more informed decisions, leading to better animal health, higher productivity, and increased profitability.
dc.description.sponsorshipDeanship of Scientific Research, King Khalid University R.G.P.1/109/44
dc.identifier.doi10.3934/math.20231051
dc.identifier.endpage20653
dc.identifier.issn24736988
dc.identifier.issue9
dc.identifier.scopus2-s2.0-85163347411
dc.identifier.startpage20612
dc.identifier.urihttps://hdl.handle.net/11452/51630
dc.identifier.volume8
dc.indexed.scopusScopus
dc.language.isoen
dc.publisherAmerican Institute of Mathematical Sciences
dc.relation.journalAIMS Mathematics
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectRough sets
dc.subjectProbabilistic hesitant information
dc.subjectNeutrosophic information
dc.subjectMulti-criteria decision-making
dc.subjectEinstein aggregation operators
dc.subject.scopusFuzzy Decision-Making Methods for Complex Problems
dc.titleAn optimization strategy with SV-neutrosophic quaternion information and probabilistic hesitant fuzzy rough Einstein aggregation operator
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentFen ve Edebiyat Fakültesi/Matematik Bölümü
relation.isAuthorOfPublication601ef81f-9bdf-4a4a-9ac1-82a82260384d
relation.isAuthorOfPublication.latestForDiscovery601ef81f-9bdf-4a4a-9ac1-82a82260384d

Files

Collections