Publication:
Cluster ensemble selection and consensus clustering: A multi-objective optimization approach

dc.contributor.authorAktaş, Dilay
dc.contributor.authorLokman, Banu
dc.contributor.authorDejaegere, Gilles
dc.contributor.buuauthorİnkaya, Tulin
dc.contributor.buuauthorİNKAYA, TÜLİN
dc.contributor.departmentBiyoistatistik Ana Bilim Dalı.
dc.contributor.departmentTıp Fakültesi
dc.contributor.orcid0000-0002-6260-0162
dc.contributor.researcheridAAH-2155-2021
dc.date.accessioned2025-01-23T05:25:37Z
dc.date.available2025-01-23T05:25:37Z
dc.date.issued2024-01-16
dc.description.abstractCluster ensembles have emerged as a powerful tool to obtain clusters of data points by combining a library of clustering solutions into a consensus solution. In this paper, we address the cluster ensemble selection problem and design a multi -objective optimization -based solution framework to produce consensus solutions. Given a library of clustering solutions, we first design a preprocessing procedure that measures the agreement of each clustering solution with the other solutions and eliminates the ones that may mislead the process. We then develop a multi -objective optimization algorithm that selects representative clustering solutions from the preprocessed library with respect to size, coverage, and diversity criteria and combines them into a single consensus solution, for which the true number of clusters is assumed to be unknown. We conduct experiments on different benchmark data sets. The results show that our approach yields more accurate consensus solutions compared to full -ensemble and the existing approaches for most data sets. We also present an application on the customer segmentation problem, where our approach is used to segment customers and to find a consensus solution for each
dc.description.sponsorshipFonds de la Recherche Scientifique - FNRS 2.5020.11
dc.description.sponsorshipWalloon Region
dc.identifier.doi10.1016/j.ejor.2023.10.029
dc.identifier.endpage1077
dc.identifier.issn0377-2217
dc.identifier.issue3
dc.identifier.scopus2-s2.0-85176208824
dc.identifier.startpage1065
dc.identifier.urihttps://doi.org/10.1016/j.ejor.2023.10.029
dc.identifier.urihttps://hdl.handle.net/11452/49704
dc.identifier.volume314
dc.identifier.wos 001166557500001
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherElsevier
dc.relation.journalEuropean Journal Of Operational Research
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectQuality
dc.subjectDiversity
dc.subjectModel
dc.subjectMultiple objective programming
dc.subjectCluster ensembles
dc.subjectEnsemble selection
dc.subjectConsensus clustering
dc.subjectSocial sciences
dc.subjectScience & technology
dc.subjectTechnology
dc.subjectManagement
dc.subjectOperations research & management science
dc.subjectBusiness & economics
dc.titleCluster ensemble selection and consensus clustering: A multi-objective optimization approach
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentTıp Fakültesi/Biyoistatistik Ana Bilim Dalı.
local.indexed.atWOS
local.indexed.atScopus
relation.isAuthorOfPublication50789246-3e56-4752-a821-3ae9957be346
relation.isAuthorOfPublication.latestForDiscovery50789246-3e56-4752-a821-3ae9957be346

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
Inkaya_vd_2024.pdf
Size:
1.27 MB
Format:
Adobe Portable Document Format