Yayın:
Prediction of cutting parameters in band sawing using a gradient boosting-based machine learning approach

dc.contributor.authorKınacı, Yunus Emre
dc.contributor.authorAlisinoğlu, Mahmut Berkan
dc.contributor.buuauthorHAYBER, ŞEKİP ESAT
dc.contributor.buuauthorUYAR, MURAT
dc.contributor.buuauthorAlisinoğlu, Mahmut Berkan
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentElektrik ve Elektronik Mühendisliği Ana Bilim Dalı
dc.date.accessioned2025-11-06T16:39:41Z
dc.date.issued2025-10-20
dc.description.abstractThis study presents a gradient boosting-based machine learning (ML) approach developed to predict cutting speed and feed rate in band sawing operations. The model was built using a dataset of 1701 experimental samples from three industrially common material types: AISI 304, CK45, and AISI 4140. Each sample was defined by key process parameters, namely, material type, a hardness range of 15-44 HRC, and a diameter range of 100-500 mm, with cutting speed and feed rate as target variables. Five ML models were examined and compared in this study, including linear regression (LR), support vector regression (SVR), random forest regression (RFR), least squares boosting (LSBoost), and extreme gradient boosting (XGBoost). Model training and validation were carried out using five-fold cross-validation. The results show that the XGBoost model offers the highest accuracy. For cutting speed estimation, the performance values of XGBoost are an RMSE of 0.213, an MAE of 0.140, an R2 of 0.999, and an MAPE of 0.407%; and for feed rate estimation, an RMSE of 0.259, an MAE of 0.169, an R2 of 0.999, and a MAPE of 1.14%. These results indicate that gradient-based ensemble methods capture the nonlinear behavior of cutting parameters more effectively than linear or kernel-driven techniques, providing a practical and robust approach for data-driven optimization in intelligent manufacturing.
dc.identifier.doi10.3390/machines13100966
dc.identifier.issue10
dc.identifier.scopus2-s2.0-105020279458
dc.identifier.urihttps://doi.org/10.3390/machines13100966
dc.identifier.urihttps://hdl.handle.net/11452/56568
dc.identifier.volume13
dc.identifier.wos001601981400001
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherMdpi
dc.relation.journalMachines
dc.subject Energy-consumption
dc.subjectRandom forest
dc.subjectOptimizatıon
dc.subjectModel
dc.subjectBand sawing operations
dc.subjectCutting parameter prediction
dc.subjectMachine learning
dc.subjectRegression models
dc.subjectXGBoost
dc.subjectScience & Technology
dc.subjectTechnology
dc.subjectEngineering, Electrical & Electronic
dc.subjectEngineering, Mechanical
dc.subjectEngineering
dc.titlePrediction of cutting parameters in band sawing using a gradient boosting-based machine learning approach
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/Elektrik ve Elektronik Mühendisliği Ana Bilim Dalı
local.indexed.atWOS
local.indexed.atScopus
relation.isAuthorOfPublicationdff5e1ef-6b19-4f8e-9a7d-91e1f44a6773
relation.isAuthorOfPublication2b7e6090-8c83-4b82-a0c9-f479024ebdc4
relation.isAuthorOfPublication.latestForDiscoverydff5e1ef-6b19-4f8e-9a7d-91e1f44a6773

Dosyalar

Orijinal seri

Şimdi gösteriliyor 1 - 1 / 1
Placeholder
Ad:
Hayber_vd_2025.pdf
Boyut:
8.52 MB
Format:
Adobe Portable Document Format