Publication:
Two-tier anomaly detection based on traffic profiling of the home automation system

dc.contributor.authorGajewski, Mariusz
dc.contributor.authorBatalla, Jordi Mongay
dc.contributor.authorLevi, Albert
dc.contributor.authorMavromoustakis, Constandinos X.
dc.contributor.authorMastorakis, George
dc.contributor.buuauthorTogay, Cengiz
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentBilgisayar Mühendisliği
dc.contributor.departmentSiber Güvenlik Bölümü
dc.contributor.orcid0000-0001-5739-1784
dc.contributor.researcheridAAG-9038-2020
dc.contributor.scopusid15065979500
dc.date.accessioned2023-06-15T10:30:32Z
dc.date.available2023-06-15T10:30:32Z
dc.date.issued2019-07-20
dc.description.abstractSmart building equipment and automation systems often become a target of attacks and are used for attacking other targets located out of the Home Area Network. Attacks are often related to changes in traffic volume, disturbed packet flow or excessive energy consumption. Their symptoms can be recognized and interpreted locally, using software agent at Home Gateway. Although anomalies are detected locally at the Home Gateway, they can be exploited globally. Thus, it is significantly important to detect global attack attempts through anomalies correlation. Our proposal in this paper is the involvement of the Network Operator in Home Area Network security. Our paper describes a novel strategy for anomaly detection that consists of shared responsibilities between user and network provider. The proposed two-tier Intrusion Detection System uses a machine learning method for classifying the monitoring records and searching suspicious anomalies across the network at the service provider's data center. Result show that local anomaly detection combined with anomaly correlation at the service providers level can provide reliable information on the most frequent IoT devices misbehavior which may be caused by infection.
dc.description.sponsorshipNational Centre for Research and Development (NCBiR) in Poland
dc.identifier.citationGajewski, M. vd. (2019). ''Two-tier anomaly detection based on traffic profiling of the home automation system''. Computer Networks, 158, 46-60.
dc.identifier.endpage60
dc.identifier.issn1389-1286
dc.identifier.issn1872-7069
dc.identifier.scopus2-s2.0-85065068872
dc.identifier.startpage46
dc.identifier.urihttps://doi.org/10.1016/j.comnet.2019.04.013
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S1389128618311587
dc.identifier.urihttp://hdl.handle.net/11452/33045
dc.identifier.volume158
dc.identifier.wos000472243200004
dc.indexed.wosSCIE
dc.language.isoen
dc.publisherElsevier
dc.relation.collaborationYurt dışı
dc.relation.collaborationSanayi
dc.relation.journalComputer Networks
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.relation.tubitak117E017
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectComputer science
dc.subjectEngineering
dc.subjectTelecommunications
dc.subjectHome gateway
dc.subjectWireless sensor networks
dc.subjectSmart home
dc.subjectAnomaly detection
dc.subjectInternet of things
dc.subjectIntrusion-detection
dc.subjectInternet
dc.subjectAutomation
dc.subjectComputer crime
dc.subjectEnergy utilization
dc.subjectEnterprise resource planning
dc.subjectGateways (computer networks)
dc.subjectHome networks
dc.subjectInternet of things
dc.subjectInternet service providers
dc.subjectIntrusion detection
dc.subjectLearning systems
dc.subjectNetwork security
dc.subjectSearch engines
dc.subjectSoftware agents
dc.subjectWireless sensor networks
dc.subjectAnomaly correlations
dc.subjectBuilding equipments
dc.subjectHome automation systems
dc.subjectHome gateway
dc.subjectIntrusion detection systems
dc.subjectMachine learning methods
dc.subjectShared responsibility
dc.subjectSmart homes
dc.subjectAnomaly detection
dc.subject.scopusDenial-Of-Service Attack; DDoS; Attack
dc.subject.wosComputer science, hardware & architecture
dc.subject.wosComputer science, information systems
dc.subject.wosEngineering, electrical & electronic
dc.subject.wosTelecommunications
dc.titleTwo-tier anomaly detection based on traffic profiling of the home automation system
dc.typeArticle
dc.wos.quartileQ4
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/Bilgisayar Mühendisliği/Siber Güvenlik Bölümü
local.indexed.atScopus
local.indexed.atWOS

Files

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: