Yayın:
Enhanced crashworthiness performance of auxetic structures using artificial neural network and geyser inspired algorithm

dc.contributor.authorYakupoğlu, Cihan
dc.contributor.buuauthorYILDIZ, BETÜL SULTAN
dc.contributor.buuauthorYILDIZ, ALİ RIZA
dc.contributor.departmentMakina Mühendisliği Ana Bilim Dalı.
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.researcheridAAH-6495-2019
dc.date.accessioned2025-02-04T05:49:23Z
dc.date.available2025-02-04T05:49:23Z
dc.date.issued2024-12-18
dc.description.abstractThis study focuses on the optimum design of an auxetic energy absorber intended for automobile applications. The material chosen for this energy absorber is SCGA27D galvanized steel. This research proposes the utilization of an artificial neural network-assisted metaheuristic for optimizing automobile structural components. The geyser inspired algorithm (GEA), ship rescue algorithm, and mountain gazelle algorithm are employed to optimize an automobile energy absorber. The objective of the problem is to obtain optimal geometry for an energy absorber while simultaneously reducing mass and meeting energy absorption constraints. The findings demonstrate that both the GEA algorithm and SCGA27D galvanized steel material exhibit exceptional capabilities in designing vehicle structures.
dc.identifier.doi10.1515/mt-2024-0233
dc.identifier.issn0025-5300
dc.identifier.urihttps://doi.org/10.1515/mt-2024-0233
dc.identifier.urihttps://hdl.handle.net/11452/50029
dc.identifier.wos001378894600001
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherWalter De Gruyter Gmbh
dc.relation.journalMaterials Testing
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.relation.tubitak5230004
dc.subjectArithmetic optimization algorithm
dc.subjectSalp swarm algorithm
dc.subjectDesign optimization
dc.subjectEnergy-absorption
dc.subjectAluminum
dc.subjectTubes
dc.subjectSimulation
dc.subjectCrash
dc.subjectAuxetic structures
dc.subjectGeyser inspired algorithm
dc.subjectEnergy absorber
dc.subjectOptimization
dc.subjectScga27d galvanized steel
dc.subjectScience & technology
dc.subjectTechnology
dc.subjectMaterials science, characterization & testing
dc.subjectMaterials science
dc.titleEnhanced crashworthiness performance of auxetic structures using artificial neural network and geyser inspired algorithm
dc.typeArticle
dc.type.subtypeEarly Access
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/Makina Mühendisliği Ana Bilim Dalı.
local.indexed.atWOS
relation.isAuthorOfPublicatione544f464-5e4a-4fb5-a77a-957577c981c6
relation.isAuthorOfPublication89fd2b17-cb52-4f92-938d-a741587a848d
relation.isAuthorOfPublication.latestForDiscoverye544f464-5e4a-4fb5-a77a-957577c981c6

Dosyalar