Publication:
Experimental and numerical investigations on the thermal performance of three different cold plates designed for the electrical vehicle battery module

dc.contributor.authorSevilgen, Gökhan
dc.contributor.authorDursun, Harun
dc.contributor.authorKılıç, Muhsin
dc.contributor.buuauthorSEVİLGEN, GÖKHAN
dc.contributor.buuauthorDursun, Harun
dc.contributor.buuauthorKILIÇ, MUHSİN
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentOtomotiv Mühendisliği Bölümü
dc.contributor.orcid0000-0002-7746-2014
dc.contributor.orcid0000-0003-2113-4510
dc.contributor.researcheridO-2253-2015
dc.contributor.researcheridJPA-3189-2023
dc.contributor.researcheridABG-3444-2020
dc.date.accessioned2024-09-27T07:30:40Z
dc.date.available2024-09-27T07:30:40Z
dc.date.issued2023-10-01
dc.description.abstractThe thermal performance of battery modules has a crucial role in the performance, safety, and lifetime of battery cells. Commonly, battery models are validated through experimental data to ensure the correctness of model behavior; however, the influences of experimental setups are often not considered in the laboratory environment, especially for prismatic cells such as lithium titanate oxide (LTO) battery cells used in electric vehicles. For this purpose, both experimental and numerical studies of the thermal performance of the battery module consisting of LTO cells was investigated using different cold plates used in electrical and hybrid vehicles. Three different discharging rates were applied to the battery module to obtain comparative results of the cooling performance. In the numerical simulations, heat generation models are typically used to observe the thermal behavior of the battery module; however, in the numerical study, dual potential multi-scale multi-domain (MSMD) battery models were used, with transient flow and heat transfer calculations performed. The numerical results were in good agreement with the experimental data. A new high-performance cold plate was developed for the thermal management of LTO battery cells. In comparison with the other two cold plate configurations, the proposed cold plate configuration dropped the maximum temperature up to 45% for the same operating conditions.
dc.identifier.doi10.3390/su151914162
dc.identifier.eissn2071-1050
dc.identifier.issue19
dc.identifier.urihttps://doi.org/10.3390/su151914162
dc.identifier.urihttps://www.mdpi.com/2071-1050/15/19/14162
dc.identifier.urihttps://hdl.handle.net/11452/45381
dc.identifier.volume15
dc.identifier.wos001125468200001
dc.indexed.wosWOS.SCI
dc.indexed.wosWOS.SSCI
dc.language.isoen
dc.publisherMDPI
dc.relation.journalSustainability
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.relation.tubitak219M475
dc.relation.tubitak22AG001
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectLithium-ion battery
dc.subjectPhase-change material
dc.subjectManagement-system
dc.subjectHeat-pipe
dc.subjectModel
dc.subjectCold plate
dc.subjectBattery module
dc.subjectLi-ion
dc.subjectThermal performance
dc.subjectCfd
dc.subjectMsmd model
dc.subjectScience & technology
dc.subjectLife sciences & biomedicine
dc.subjectGreen & sustainable science & technology
dc.subjectEnvironmental sciences
dc.subjectEnvironmental studies
dc.subjectScience & technology - other topics
dc.titleExperimental and numerical investigations on the thermal performance of three different cold plates designed for the electrical vehicle battery module
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/Otomotiv Mühendisliği Bölümü
local.contributor.departmentMühendislik Fakültesi/Makine Mühendisliği Bölümü
relation.isAuthorOfPublication975d5454-a37e-43a5-a932-2de51b928419
relation.isAuthorOfPublication56d98e3d-139a-4bf2-b105-8e1402865346
relation.isAuthorOfPublication.latestForDiscovery975d5454-a37e-43a5-a932-2de51b928419

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Sevilgen_2023.pdf
Size:
5.46 MB
Format:
Adobe Portable Document Format